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Abstract. One of the standard axioms for Boolean contact algebras says that if a region

x is in contact with the join of y and z , then x is in contact with at least one of the two

regions. Our intention is to examine a stronger version of this axiom according to which

if x is in contact with the supremum of some family S of regions, then there is a y in

S that is in contact with x . We study a modal possibility operator which is definable in

complete algebras in the presence of the aforementioned axiom, and we prove that the class

of complete algebras satisfying the axiom is closely related to the class of modal KTB-

algebras. We also demonstrate that in the class of complete extensional contact algebras

the axiom is equivalent to the statement: every region is isolated. Finally, we present

an interpretation of the modal operator in the class of the so-called resolution contact

algebras.
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1. Introduction

Since the beginning of the twentieth century Boolean contact algebras have
been the standard algebraic approach to region-based analyses of spatial
relations of contact (proximity) and separation. The metatheory of the al-
gebras have been developed, and various subclasses and extensions of the
class of the algebras have been studied. In this paper we intend to contribute
to the field via an analysis of the stronger form of one of the standard axioms
for Boolean contact algebras. On the intuitive level, the standard axiom says
that if a region x is in contact with the Boolean meet of regions y and z,
then x is in contact with either y or z (or, possibly, both). The strengthening
we have in mind generalizes the axiom to infinite cases; that is, the axiom
we put forward says that if x is in contact with the supremum of the family
of regions S, then in S there is a region that is in contact with x.
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The axiom is worth studying due to at least two reasons. Firstly, in [9] it
was proved that every Boolean contact algebra can be embedded in a partic-
ular type of algebra that satisfies our axiom, the so-called relational algebra.
Secondly, in the class of complete Boolean contact algebras that satisfy the
axiom, we can define a modal possibility operator. This establishes a close-
knit connection between modal algebras and a subclass of Boolean contact
algebras.

In Section 2 we recall some standard notions and their properties neces-
sary for our results. The notions include grills of Boolean algebras, modal
operators that can be obtained from grills and ideals, and a quasi-modal
operator of Celani’s ([2]). We define the notion of a co-principal grill and by
means of it we define a possibility modal operator.

Section 3 recalls elementary facts about Boolean contact algebras, intro-
duces a quasi-modal operator related directly to the contact relation, and
summarizes properties of the subordination relation, which plays an impor-
tant role in the remaining sections.

In Section 4 we provide various examples and counterexamples whose
aim is to familiarize the reader with the content of the new axiom. Among
others, we show that the axiom is indeed stronger than the standard one,
that every relational contact algebra satisfies it, and that under the stan-
dard topological interpretation of contact the regular closed algebra of any
Alexandroff space satisfies it too.

Section 5 contains a proof of the fact that in the so-called extensional
Boolean contact algebras introduction of the axiom results in collapsing
the contact relation to the standard overlap relation. This is a situation
equivalent to every region being isolated, i.e., every region being its own
non-tangential part.

In Section 6 we study mutual dependencies between the contact relation
and a modal possibility operator. Firstly, we demonstrate that if a Boolean
contact algebra satisfies the axiom, then we can define a modal operator that
is completely additive, and we investigate its properties. Secondly, we show
that in every complete KTB-algebra we can define a contact relation that
satisfies the axiom. Thirdly, we gather Boolean contact algebras satisfying
the axiom into a category using the so-called p-morphisms, and we prove that
this category is isomorphic to the category of the complete KTB-algebras
and homomorphisms.

The last section introduces the class of resolution algebras which serve
as a kind of geometric interpretation of Boolean contact algebras satisfying
the axiom. We show that there is a dependence between these algebras and
the class of S5 modal algebras; that is, an expansion of any such an algebra
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with the contact relation can be always embedded into a modal expansion
of a resolution algebra.

2. Preliminaries

Let B = 〈B, ·, +,−,0,1〉 be a Boolean algebra (BA for short) with the
operations of, respectively, meet, join and boolean complement; and with the
two distinguished elements: the minimum 0 and the maximum 1. Elements
of the domain are called regions. We use the standard logical operators and
connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction), → (material
implication), ←→ (material equivalence), ∃ (existential quantifier) and ∀
(universal quantifier). :←→ is a definitional equivalence, and := a definitional
equality. If S ⊆ B, then

∨
S is the supremum of S (its least upper bound)

and
∧

S is its infimum (greatest lower bound). Given a domain D and
its subset A, A� is the set-theoretic complement of A with respect to D.
Throughout the paper, ‘iff’ is an abbreviation for ‘if and only if’.

The class of all BAs is denoted by ‘BA’, and the class of all complete BAs
by ‘BAc’.

As usual, in B ∈ BA we define two standard order relations:
x ≤ y :←→ x · y = x,

x < y :←→ x ≤ y ∧ x 
= y.

We call S ⊆ B an upward closed subset iff it satisfies the following condition
for all x ∈ B:

x ∈ S →↑ x ⊆ S ,

where:
↑ x:={y ∈ B | x ≤ y}.

Analogously, S ⊆ B is a downward closed subset iff it satisfies the following
condition for all x ∈ B:

x ∈ S →↓ x ⊆ S ,

where:
↓ x:={y ∈ B | y ≤ x}.

Additionaly, we also define a binary relation of overlapping or compati-
bility of regions:

xOy :←→ x · y 
= 0,

and its complement, the disjointness (or incompatibility) of regions:

x ⊥ y :←→ x · y = 0.
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For any region x we define:
O(x):={y ∈ B | yOx},

the set of all regions that overlap x. Every Boolean algebra is O-extensional,
i.e., it satisfies the following condition for all x, y ∈ B:

O(x) = O(y) → x = y.

As usual, a subset F ⊆ B is a filter of B iff it is a non-empty upward
closed set such that for all a, b ∈ F , a ·b ∈ F . Analogously, a subset J ⊆ B
is an ideal of B iff it is a non-empty downward closed set such that for all
a, b ∈ J , a + b ∈ J .

2.1. Completely Prime Grills

We recollect some elementary properties of Boolean contact algebras. For
more details see [5,6,16,22,23].

A non-empty subset S of the domain of a Boolean algebra is a grill iff
it does not contain the zero element, it is upward closed and it also satisfies
the following condition for all x, y ∈ B:

x + y ∈ S → x ∈ S ∨ y ∈ S .

It is routinely verified that the set-theoretic complement of a grill is an ideal.
We denote by Gr(B) the set of all grills of a Boolean algebra B. A grill G
is completely prime iff it satisfies the following, stronger property:

∨
J ∈ G → (∃x ∈ J) x ∈ G

for all arbitrary families of regions J ⊆ B such that their join exists. For
example, for any non-zero region x, O(x) is a completely prime grill.

Proposition 1. Let B be a complete Boolean algebra. Then, a grill G is
completely prime iff J :=G � is a principal ideal, i.e., J =↓ x for some
x ∈ B.

Proof. If G is a completely prime (c.p., in abbreviation) grill, then J :=G �

is an ideal that satisfies the following completeness property:
J ⊆ J →

∨
J ∈ J .

But then J =↓ ∨
J . The other way round, suppose that S =↓ x for some

x ∈ B and let J ⊆ B be a family of regions such that
∨

J /∈↓ x. Then, there
must be at least one y ∈ J such that y � x.

As a consequence, given a complete Boolean algebra, G is a c.p. grill iff
there exists a region x such that G = (↓ x)� = O(−x).
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The above results show that the notion of a c.p. grill is non-trivial, in the
sense that c.p. grills exist in every non-degenerate algebra (i.e., an algebra
with at least two elements).

Corollary 2. There is a one-to-one correspondence between c.p. grills and
non-zero regions of a given complete BA, and so between c.p. grills and
proper principal ideals.

It is well known that every grill is equal to the set-theoretic sum of all
ultrafilters that are its subsets, and it is easy to verify that any sum of ultra-
filters is a grill [20]. Therefore, it might be tempting to identify completely
prime grills with the sums of completely prime filters.1 However, this cannot
hold in general in light of the following well-known property of BAs:

Proposition 3. ([18]) In every complete BA, F is a c.p. filter iff there
exists an atom2 a such that F =↑ a (i.e., c.p. filters are exactly principal
ultrafilters3).

Proof. Indeed, if F is a c.p. filter, then
∧
F ∈F . Since if not,∨{−x |x∈F} ∈ F , so there exists x ∈ F such that −x ∈ F , a con-

tradiction. Thus F =↑ ∧
F , and since F is an ultrafilter, then

∧
F must

be an atom.

Therefore, atomless algebras do not contain completely prime filters, yet
they contain c.p. grills, as we can always construct principal ideals. What
we can only assert is that:

Proposition 4. If a BA contains c.p. filters, then any sum of these is
a completely prime grill.

The situation is different in the case of complete and atomic algebras. If
x ∈ G , where G is a c.p. grill, then x 
= 0, so there is a set of atoms S 
= ∅
such that x =

∨
S. In consequence there is an atom a ∈ S ∩G , and ↑ a ⊆ G .

Thus we have:

Proposition 5. If B ∈ BAc is atomic, then for any c.p. grill G :

1. for every x ∈ G , there is a principal ultrafilter U ⊆ G such that x ∈ U ,

2. G contains at least one atom,

3. G is the sum of all principal ultrafilters contained in G .

1Recall that a filter F is called completely prime iff for all families J ⊆ B such that∨
J ∈ F there exists x ∈ J satisfying x ∈ F .
2A region x of a Boolean algebra B is an atom iff 0 < x and x is minimal with respect

to <.
3An ultrafilter U of a BA is principal iff U = ↑ a, for some atom a.
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2.2. Modal Operators from Ideals and Grills

Let us first recall some standard notions.
Definition 1. A possibility modal operator on a BA B is a function
♦ : B →B that is normal: ♦(0) = 0, and additive: ♦(x + y) = ♦(x) + ♦(y)
for all x, y ∈ B. ♦ is completely additive iff ♦ (

∨
J) =

∨
x∈J ♦(x) for all

families J ⊆ B such that their join exists.
A necessity modal operator is a function � : B → B that is co-normal:

�(1) = 1, and multiplicative: �(x · y) = �(x) · �(y) for all x, y ∈ B. �
is completely multiplicative iff � (

∧
J) =

∧
x∈J �(x) for all families J ⊆ B

such that their meet exists.

Definition 2. If Id(B) is the lattice of ideals of a Boolean algebra B, then
a mapping Δ: B → Id(B) is a quasi-modal operator4 iff it satisfies the
following two conditions:
1. Δ(1) = L,

2. Δ(x · y) = Δ(x) ∩ Δ(y) for all x, y ∈ B.

Δ is principal iff Δ(x) is a principal ideal for every x ∈ B, that is, for every
x ∈ B there exists y ∈ B such that Δ(x) =↓ y. If Δ is a principal operator,
then-after [3]-we can recover a necessity operator � : B → B via:

�x:=(ιy) Δ(x) =↓ y.5

Conversely, in a modal algebra 〈B,�〉 we can define a quasi-modal operator
Δ: B → Id(B) by Δ(x):= ↓ �x.

Since grills are set-theoretic complements of proper ideals we can use
them as well to define quasi-modal and modal operators. To this end we
define:

Gr(B)◦:=
{
J �

∣
∣
∣J ∈ Id(B)

}
= Gr(B) ∪ {∅},

which is the lattice dual to Id(B). Define an operator ∇ : B → Gr(B)◦ such
that:

∇(x):=Δ(−x)�.

It is routine to verify that:
∇(0) = ∅ and ∇(x + y) = ∇(x) + ∇(y) for all x, y ∈ B. (1)

So ∇ is a quasi-modal possibility operator.6

4The notion was introduced by [2].
5ι is the standard definite description operator, so (ιx) ϕ(x) is the only object x that

satisfies ϕ.
6Observe that this a different operator than ∇ from [2].
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Let us say that a grill G is co-principal iff there is x ∈ B such that
G = (↓ x)�. Accordingly, ∇ is co-principal iff for every x ∈ B, ∇(x) is co-
principal. As in the case of a principal Δ, for a co-principal ∇ we may define
a possibility operator ♦ : B → B via:

♦x:=(ιy) ∇(x) = (↓ −y)�

=(ιy) ∇(x) = O(y).
(2)

We can see that the operators � and ♦ introduced by means of Δ and ∇,
respectively, are related to each other in the expected way for x, y ∈ B:

♦x = y ←→ ∇(x) = (↓ −y)�

←→ Δ(−x)� = (↓ −y)�

←→ Δ(−x) =↓ −y

←→ � − x = −y

←→ −� − x = y.

The above equivalence could be taken as the main definition based on which
we can prove that (2) holds.

We also have:

Proposition 6. If 〈B,♦〉 is a modal algebra, then ∇ : B → Gr(B)◦ such
that ∇(x):=(↓ −♦x)� is a quasi-modal operator.

The approach is entirely dual, in the following sense. Given a Boolean
algebra B, let us start with a quasi-modal operator ∇ : B → Gr(B)◦ that
satisfies the properties from (1). From ∇ we can recover Δ via:

Δ(x):=∇(−x)�.

Further, we can define a possibility operator ♦ as in (2), for a Δ operator
that is co-principal, and we can define a necessity operator. For such defined
operators we can prove that all the suitable equivalences hold.

As the notion of grill is closely related to Boolean contact algebras, whose
subclass is the topic of this paper, in the sequel we will work with grills and
possibilities rather than ideals and necessities.

3. Boolean Contact Algebras

Any Boolean algebra is turned into a Boolean contact algebra by expanding
it to a structure 〈B,C〉 = 〈B, ·, +,−,0,1,C〉 where C ⊆ B2 is a contact
relation which satisfies the following five universal axioms:
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¬(0Cx), (C0)

x ≤ y ∧ x 
= 0 → x C y, (C1)

x C y → y C x, (C2)

x ≤ y ∧ z C x → z C y, (C3)

xCy + z → xCy ∨ xCz. (C4)

The complement of C is denoted by ‘C/’, and in the case xC/y we say that x
is separated from y. The class of all Boolean contact algebras is denoted by
‘BCA’. The class of all complete BCAs (i.e., these whose underlying BA is
complete) is denoted by ‘BCAc’. Generally, for any class K of algebras, Kc

is its subclass composed of complete algebras from K. Given K and extra
constraints ϕ1, . . . , ϕn put upon elements of K, the following:

K + (ϕ1) + · · · + (ϕn)

denotes the subclass of K compose of all structures that satisfy every ϕi for
1 � i � n.

Unlike, e.g., [10], we do not assume extensionality axiom for contact:

(xC a → xC b) → a ≤ b. (C5)

nor any of its equivalent forms. However, later on we will consider two con-
straints that are equivalent to (C5).7

As we see, axiom (C4) says that the contact relation distributes over the
binary join operation. In the sequel, let us focus on those complete BCAs
in which the contact completely distributes over join, i.e., those that satisfy
the following second-order constraint for all families J ⊆ B:

xC
∨

J → (∃y ∈ J) xCy. (C4c)

For any region x let C(x) be the set of all regions that are in contact
with x:

C(x):={y ∈ B | yCx}.

It is easy to see that the axioms (C0), (C3) and (C4) say that:

C(x) is a grill.

Further, it can be observed that (C4c) says that every C(x) is a c.p. grill:
∨

J ∈ C(x) → (∃y ∈ J) y ∈ C(x).

7See (∃ ↞) and (∃ ↠) on page 13.
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Thus, C in the above form can be seen as a quasi-modal operator
C : B→Gr(B)◦, since by (C0) and (C4) respectively, we have that:

C(0) = ∅, (C0�)

C(x + y) = C(x) ∪ C(y). (C4�)

Additionally, it is a completely additive operator iff (C4c) holds for all
J ⊆ B:

C
(∨

J
)

=
∨

x∈J

C(x). (C4c
�)

By Proposition 1 we have:

Corollary 7. If 〈B,C〉 ∈ BCAc + (C4c), then C : B → Gr(B)◦ is a co-
principal quasi-modal operator.

3.1. Subordination and Non-tangential Part Relations

Every contact algebra can be expanded with the standard binary relation
of non-tangential part (inclusion):

x � y :←→ xC/ − y.

Intuitively, x is a non-tangential part of y if and only if x does not touch
the complement of y (or, in other words, x is way below y or x is completely
surrounded by y). Alternatively, we can characterize non-tangential inclusion
in the following way:

x � y ←→ C(x) ⊆ O(y). (3)

It is well known that non-tangential inclusion is a special case of the subor-
dination relation from [1], i.e., it has the following properties:

0 � 0 and 1 � 1, (S1)

x � y ∧ x � z → x � y · z, (S2)

x � y ∧ z � y → x + z � y, (S3)

x ≤ y ∧ y � z ∧ z ≤ u → x � u. (S4)

The properties listed below do not hold for every subordination, but they
follow from (3) and our axioms for the contact relation:

x � y → x ≤ y, (S5)

x � y → −y � −x, (S6)

x � y ∧ y · z = 0 → xC/z, (S7)
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and together with the former four axioms they characterize non-tangential
inclusion.

In general, subordination is definitionally equivalent to pre-contact, which
is the relation characterized by the axioms for the contact relation without
symmetry, i.e., (C2). Non-tangential inclusion is equivalent to contact. In
the sequel, � is always a non-tangential inclusion.

After [19], we call isolated every region that is separated from its own
complement, i.e., any region x such that x � x.

Observe that by means of � we can express (C4c) in an alternative form
(for all J ⊆ B):

(∀y ∈ J) x � y → x �
∧

J. (C4c�)

4. Examples and Counterexamples

From now on we focus on the class of complete Boolean contact algebras.
For brevity let us introduce the following definition:

C4c:=BCAc + (C4c).

To see that this class is not empty, observe that the following is true:

Proposition 8. Let 〈B,C〉 be a complete BCA where C = O, then in B

contact completely distributes over join.

Proof. Let J ⊆ B. We have:

xO
∨

J ←→ x ·
∨

J 
= 0

←→ (∃y ∈ J) x · y 
= 0

←→ (∃y ∈ J) xOy.

Since the class of complete BCAs in which contact is overlap is non-
empty, as it contains, e.g., the power set algebra of ω (the set of natural
numbers), the class of complete BCAs that satisfy (C4c) is non-empty as
well.

Another example of the class of contact algebras that satisfy the axiom
is the class of all relational contact algebras, initiated independently by [11,
12,21], and later developed by [9]. Given a reflexive and symmetric frame
〈W,R〉, i.e., a non-empty set of worlds with an accessibility relation R ⊆
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W × W that is reflexive and symmetric, we expand the power set algebra
P(W ) with the following relation:

ACRB :←→ (∃x ∈ A)(∃y ∈ B) x R y.

It is routine to verify that CR satisfies axioms (C0)–(C4), so it is a Boolean
contact algebra. Moreover:

Proposition 9. Every relational contact algebra belongs to the class C4c.

This follows from the fact that the suprema in P(W ) are set-theoretic sums,
so if ACR

⋃
i∈I Bi, there must be x ∈ A and y ∈ Bi for some i ∈ I such that

x R y.
In [9] it is proven that every contact algebra can be embedded in a rela-

tional contact algebra. Because of this, algebras of this kind may be treated
as the standard examples of elements of the class C4c.

Given a topological space X, let RC(X) be the complete Boolean algebra
of all regular closed subsets of X, i.e., the sets A ∈ P(X) for which A =
Cl Int A.8 The Boolean operations are given by the following identities:

A · B:= Cl Int(A ∩ B),

A + B:=A ∪ B,

−A:= Cl(X\A),
∨

S:= Cl
⋃

S.

Details concerning regular closed algebras can be found, e.g., in [15].
As is well known, for any topological space X, RC(X) with the contact

interpreted as non-emptiness of the set-theoretic intersection:

ACB :←→ A ∩ B 
= ∅,

is a Boolean contact algebra in which:

A � B ←→ A ⊆ Int B.

Using the topological interpretation of BCAs, we can also prove a gen-
eral fact that entails non-emptiness of the subclass of C4c, whose elements
satisfy O � C. To this end, recall that by an Alexandroff space we mean any
topological space in which the intersection of any family of open sets is open
(equivalently: the sum of any family of closed sets is closed).

Proposition 10. If X is an Alexandroff space, then 〈RC(X),C〉 satisfies
(C4c).

8Cl and Int are the standard topological operations of, respectively, closure and interior.
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Proof. Let X be an Alexandroff space. If S ⊆ P(X), then:

Cl
⋃

S ⊆
⋃

S∈S
Cl S.

Therefore, in RC(X), if AC
∨ S, then A ∩ ⋃

S∈S S 
= ∅, which means that
for some S ∈ S, A ∩ S 
= ∅, as required.

Example 1. We can now observe that there are Alexandroff spaces whose
regular closed algebras are different from the clopen algebras, and in which
contact is not overlap. Let us consider the domain:

A:=(ω+ × {1}) ∪ (ω+ × {2}) ∪ {⊥}
i.e., two standardly ordered copies of the positive integers, with ⊥ /∈ ω+ as
the bottom element (i.e., ⊥ ≤ x, for all x ∈ A). Let L:=(ω+ ×{1})∪{⊥} be
the left branch of the poset 〈A,≤〉, and let R:=(ω+ ×{2})∪{⊥} be its right
branch. Equip the poset with the upper Alexandroff topology. The interior
of L is L\{⊥} =↑ 〈1, 1〉, and its closure is L, so L is regular closed. Similar
arguments apply to R. Thus, it is not hard to see that RC(A) = {0, L, R, A},
LCR, but L · R = 0 and CO(A) = {0, A}.

We may, of course, repeat the construction for any finite or infinite num-
ber of copies of ω+ (or any other or any other ordered–but nor necessarily
well-ordered–set). In the finite case, we have n many branches, Bi, for every
i � n, and 2n regular closed sets. In the infinite case, when we take some
infinite cardinal κ, we have:

A:=
⋃

α<κ

(ω+ × {α}) ∪ {⊥}.

For every α < κ, Bα = (ω+ × {α}) ∪ {⊥} is an atom of RC(A), and every
element in RC(A) is the set-theoretic sum of Bα’s, and vice versa. Thus the
cardinality of RC(A) equals 2κ.

It is clear that (C4c) entails (C4), yet the converse implication is not true.
We are going to consider some examples, including atomless (i.e., without
atoms) and atomic Boolean algebras (i.e., such in which every region is the
supremum of a set of atoms).

Example 2. To show that (C4) does not entail (C4c) consider the set of
real numbers R, the (atomless) algebra 〈RC(R),C〉 and the following family
of regular closed subsets of R:

S:=
{

[−x, x]
∣
∣
∣ 0 < x <

√
2
}

.
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Since
∨ S = Cl

⋃ S =
[−√

2,
√

2
]
, we have that:

(
−∞,−

√
2
]
C

∨
S but for all S ∈ S,

(
−∞,−

√
2
]
C/ S.

Example 3. There exists a Boolean space9 X whose algebra RC(X) with
the standard topological contact is atomless and fails to satisfy (C4c). To
see this take the Cantor space 2ω, i.e., the countable product of discrete
space {0, 1} with the standard product topology. For every f ∈ 2ω the set:

Bn(f):={g ∈ 2ω | (∀k � n) g(k) = f(k)}
is a local basis at f . Let Odd be the set of all sequences that begin with an
odd number of zeroes followed by 1, and Even be the set of all sequences that
begin with an even number of zeroes followed by 1. Let (0) be the constant
zero sequence. Both O:=Odd∪{(0)} and E:=Even∪{(0)} are regular closed,
while both Odd and Even are regular open. We see that OCE. Yet the space
is zero-dimensional, so there is a family of clopen sets {Ai | i ∈ I} such that
E =

∨
i∈I Ai, and none of Ai contains (0). To see this, think about all

clopen sets inside Even: none of them has the constant zero sequence among
its inhabitants, yet the supremum of these sets in RC(X) is equal to the
closure of their set-theoretic sum, i.e., to E. Thus O is in contact with the
supremum of all Ai’s, but with none of the Ai’s themselves.

The example is interesting also for the reason that RO(2ω) has a dense
subalgebra, i.e., CO(2ω), the algebra of all clopen subsets of the Cantor
space, whose elements satisfy (C4c). If A is a clopen subset of 2ω, and
{Bi | i ∈ I} is a family of such subsets, then if AC

∨
i∈I Bi, then

Cl A ∩ Cl Int
⋃

i∈I Bi 
= ∅. Thus A ∩ Cl
⋃

i∈I Bi 
= ∅, and in consequence
A ∩ Bi0 
= ∅, for some i0 ∈ I, as required.

Before we go on to the next example let us recall the following construc-
tion of extensions of the contact relation. Let I be an ideal of a Boolean
algebra B and let C be a contact relation on B, then we may define the
ideal extension10 of C for all x, y ∈ B via:

xCI y :←→ xCy ∨ x, y /∈ I .

It is obvious that ¬0CI x, for all x. (C1) and (C2) are immediate. For (C3),
let x, y, z ∈ B. Observe that if x ≤ y and z, x /∈ I , then, since every ideal is
downward closed, y /∈ I , and so zCI y. Finally, if xCI y+z and x, y+z /∈ I ,
then either y /∈ I or z /∈ I . Thus xCI y or xCI z, and (C4) holds either.

9A topological space is Boolean iff it is Hausdorff, compact and zero-dimensional.
10The notion is a version of the similar extension of contact via the so-called local

contact algebra, as defined in [7,22].
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Example 4. Consider the power set algebra for the set of natural num-
bers, and the contact algebra 〈P(ω),O〉. The family Fin(ω)=:I of all finite
subsets of ω is an ideal in the algebra, and so:

MCI N :←→ MON ∨ M, N /∈ Fin(ω)

is an ideal extension of O. To show that (C4c) fails take the set E of all even
numbers and enumerate the set of odd numbers: n0, n1, n2, . . .. Obviously,
ECI

∨
i∈ω {ni}, since both sets are infinite, yet for no index i, E is in contact

with {ni}.11 This example shows that there are complete atomic algebras
in which (C4c) fails.

5. The Axiom in Extensional Algebras

We show now that adding the extensionality axiom for C results in its col-
lapse to the overlap relation. Therefore, in order to obtain interesting results
for the class C4c, we have to skip extensionality.

(C5) is the standard formulation of the extensionality axiom for BCAs.
The three following constraints are its equivalents (in the class BCA):

(∀x 
= 1)(∃y 
= 0) x C/ y, (C5a)

x 
= 0 → (∃y ∈ B) (y 
= 0 ∧ y � x), (∃ ↞)
x 
= 1 → (∃y ∈ B) (y 
= 1 ∧ x � y). (∃ ↠)

Put:

�x:={y ∈ B | x � y} and �x:={y ∈ B | y � x}.

By (S5), x is an upper bound of �x. Assume that z is such an upper bound,
but xO− z. So, x · −z 
= 0. By (∃ ↞), there exists u 
= 0 such that u � x and
u ≤ −z, i.e., u � z, a contradiction. In consequence we have:

Proposition 11. If 〈B,C〉 ∈ BCA+ (∃ ↞), then for every region x: x =
∨

�x
and x =

∧

�x.

In light of this, if both (∃ ↞) and (C4c�) (the non-tangential version of
(C4c)) hold in a Boolean contact algebra 〈B,C〉, then every region in B
must be isolated:

11This BCA comes from [13], where it was presented to illustrate some properties of
Grzegorczyk points from [14]. Since the contact algebra from the example is a Grzegorczyk
contact algebra, it demonstrates as well that (C4c) is independent from the second-order
axioms of Grzegorczyk’s for the contact relation.
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Corollary 12. If 〈B,C〉 ∈ BCA+ (C4c�), then for every region x, x � x.

From Proposition 8 and from the fact that in every BCA, every region is
isolated iff overlap and contact coincide:

(∀x ∈ B) x � x if and only if C = O,

we obtain that if every region is isolated, the contact relation completely
distributes over join. In consequence the following is true:

Theorem 13. For any 〈B,C〉 ∈ BCA+ (∃ ↞) the following conditions are
equivalent:

1. 〈B,C〉 satisfies (C4c).

2. Every region of B is isolated.

3. The contact and overlap relations coincide.

5.1. Independence

To prove that (C4c) entails that every region is isolated we assumed (∃ ↞). To
show that the assumption is relevant we must produce a BCA in which the
contact relation completely distributes over join, yet there are regions that
are not isolated (or, equivalently, the overlap relation is properly included in
the contact relation). As it turns out, finding such a BCA is relatively easy.
To see this take any Boolean algebra with at least 4 elements and extend it
with the largest contact relation:

xCLy :←→ x 
= 0 ∧ y 
= 0.

The Condition (∃ ↞) fails, since the algebra has at least four elements, and
thus there is a region x 
= 0 such that −x 
= 0, and thus every non-zero
tangential part of x is in contact with −x. If the algebra is either finite or
infinite, it is equally easy to see that if x is in contact with

∨
J for some

family of regions J , then there must be a non-zero y ∈ J . And thus xCy.
Therefore we may conclude that:

Theorem 14. The sentence ‘C = O’ (and so the sentence ‘every region is
isolated’) is independent from the axioms (C0)–(C3), (C4c).

6. Between Contact and Modality

In this section, we are going to explore a close connection between contact
relations and modalities, in our context. We have recalled that from a modal
operator, we can define a quasi-modal operator, and therefore we can define
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a subordination relation, see for example [2]. The other way around is not
always true. However, we prove that a possibility operator can be defined in
the class of complete Boolean contact algebras that satisfy (C4c).

6.1. From Contact to Modality

Let us begin with the following:

Lemma 15. Let 〈B,C〉 ∈ BCAc, then 〈B,C〉 satisfies (C4c) iff for every
region x there exists a unique region y such that C(x) = O(y) and x � y. In
particular, every finite Boolean contact algebra satisfies the latter property.

Proof. Let x ∈ B. In presence of (C4c), C(x) is a completely prime grill,
so by Proposition 1 there exists a unique y such that C(x) = O(y). Since
−y is disjoint from y, it must be the case that −y is separated from x.
From O-extensionality we obtain the uniqueness of such region. The converse
implication is immediate.

Example 5. Of course, existence of the region from Lemma 15 requires
(C4c). To see this, take RC(R) with the standard topological contact. In
Example 2 we have shown that RC(R) is a BCA in which (C4c) fails. Fix
an interval I:=[u,w] with u < w. If we take any element in which I is
non-tangentially included, say A, then this element has a part [a, b] such
[u,w] ⊆ (a, b). But then there is D � [w, b], so D is separated from I. Yet
D overlaps A.

Lemma 15 brings to light a different axiomatization of the class C4c via
axioms for complete BAs plus (C0), (C1), (C2) and:

(∀x ∈ B)(∃y ∈ B)C(x) = O(y), (C4c
◦)

in particular we have:

Corollary 16. C4c = BCAc + (C4c
◦).

The uniqueness property from the Lemma 15 entails the existence of an
operation m : B → B such that:

m(x):=(ιy)C(x) = O(y). (dfm)

By Corollary 7, in every 〈B,C〉 ∈ C4c, C-as a quasi-modal operator is
co-principal, so due to (2) we have that:

Corollary 17. Let 〈B,C〉 ∈ C4c and let m : B → B be the operator de-
fined by (dfm). Then, m is a modal possibility operator.

More specifically, we have that:

m(x) =
∧

�x.
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Proof. Let x ∈ B. Since C(x) is a c.p. grill, C(x)� is a principal ideal,
and by the same reasoning as in the proof of Proposition 1 we have that
C(x)� =↓ ∨ (

C(x)�
)
. But then:

C(x) =
(
↓

∨
{y | y � −x}

)�
= O

(
−

∨
{y | y � −x}

)
= O

(∧
{y | x � y}

)
.

Obviously, we have that:

xCy ←→ m(x) · y 
= 0, (4)

and so:

x � y ←→ m(x) ≤ y.

Lemma 18. If 〈B,C〉 ∈ C4c, then m : B → B defined by (dfm) is a com-
pletely additive modal possibility operator such that:

1. x � m(x), and so x ≤ m(x), i.e., x + m(x) = m(x),

2. m(x) ≤ −y ←→ m(y) ≤ −x, which is equivalent to m(−m(−x)) ≤ x.

Proof. Since C(0) = O(0) = ∅, we have that m(0) = 0.
For complete additivity, assume that for J ⊆ B, m (

∨
J) = y. We have

that:

O(y) = C
(∨

J
)

=
⋃

x∈J

C(x) =
⋃

x∈J

O(m(x)) = O

(
∨

x∈J

m(x)

)

,

thus y =
∨

x∈J m(x), by O-extensionality.
Ad.1 Directly from Lemma 15 and properties of non-tangential inclusion.
Ad.2 Suppose m(x) ≤ −y and m(y) � −x. From the first assumption

we have that m(x) · y = 0, so y /∈ O(m(x)) = C(x), i.e., yC/x. But from the
second one we get that x ∈ O(m(y)) = C(y), i.e., xCy, a contradiction. The
second direction is analogous.

Now, since −m(y) ≤ −m(y), from the equivalence we get that
y ≤ −m(−m(y)), so m(−m(y)) ≤ −y. Substituting −x for y we get that
m(−m(−x)) ≤ x, as required.

The other way round, if x ≤ −m(y), then m(x) ≤ m(−m(y)) ≤ −y, by
monotonicity of the m operator.

It is not hard to see that:

Proposition 19. Let 〈B,C〉 ∈ C4c and let m : B → B be the operator
defined by (dfm). Then, fixed points of m are exactly the isolated regions.
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so, in light of the following:

Lemma 20. ([10]) If 〈B,C〉 is a BCA, then the set of all isolated elements,
i.e., {x ∈ B | x � x}, in which contact is reduced to overlap is a subalgebra
of 〈B,C〉.
we have:

Corollary 21. Given 〈B,C〉 ∈ C4c, A:={x ∈ B | m(x) = x} in which
contact is reduced to overlap is a subalgebra of 〈B,C〉.

The proposition below will be useful in the next example and in the
sequel:

Proposition 22. Let B be a BA, and let G be a family of its grills, then:

xCGy :←→ xOy ∨ (∃G ∈ G) {x, y} ⊆ G

is a contact relation.

Proof. (C0)–(C2) are immediate. Further, let x, y ∈ B. If xCGy and y ≤ z,
then in the case {x, y} ⊆ G , also {x, z} ⊆ G , since every grill is upward
closed. Thus CG satisfies (C3). To prove (C4), let x, y, z ∈ B. Observe that
in the case {x, y + z} ⊆ G , then either y ∈ G or z ∈ G , and in consequence
either xCGy or xCGz, as required.

Example 6. We can see that m satisfies all but one property of a modal
closure operator: m(m(x)) ≤ m(x). Let us observe that the property does
not hold for m in general. Consider the eight-element algebra B in Figure 1,
together with the two grills G1:=(↓ b)� and G2:=(↓ c)�.

Take CG for G:={G1,G2} and apply Proposition 22. We see that:

CG(a) = CG(ab) = CG(ac) = CG(bc) = O(1)

CG(b) = O(ab) and CG(c) = O(bc).

In consequence m(b) = ab and m(m(b)) = m(ab) = 1, so m in general is not
a closure operator. Observe as well that m[B] = {0, ab, bc,1} is a subboolean
subalgebra12 of B, yet it is not its subalgebra.

Let us observe that if m(x) � m(x) for an element x ∈ B, then
m(x)C/ − m(x), i.e.:

−m(x) /∈ C(m(x)) = O(m(m(x)).

12After [4], A is a subboolean subalgebra of B iff A ⊆ B and A is a Boolean algebra in
the partial order inherited from B.
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0

a b c

ab ac bc

1

Figure 1. In general, m is not a closure operator

Thus −m(x) ≤ −m(m(x)), which means that m(m(x)) ≤ m(x). However,
Example 6 shows that m is not always a closure operator, thus in general it
is not true that every m(x) is an isolated region.

The same example shows as well that in the general case m(x) �m(x)
does not entail that x is isolated. For a we have that m(a) =1, so m(a) �m(a),
but m(a) 
= a, so a is not isolated.

However, we have that:

Proposition 23. Let 〈B,C〉 ∈ C4c and let m : B → B be the operator
defined by (dfm). Then for all x ∈ B:

xC/ − x → m(x)C/ − m(x).

Proof. Let x ∈ B. If xC/ − x, then −x /∈ C(x) = O(m(x)), and thus −x ·
m(x) = 0, i.e., m(x) ≤ x. By Lemma 18.1 we have that x � m(x), so
m(x) � m(x), that is, m(x)C/ − m(x).

Example 7. The m operator may not preserve Boolean operations other
than those from Lemma 18. To see this, let us consider the eight-element
Boolean algebra in Figure 2.

Using the co-principal grill G :=(↓ c)� we can define the contact relation:

xCG y :←→ xOy ∨ x, y ∈ G .

It is routine to verify that:

m(c) = c

m(a) = m(b) = m(ab) = ab = −c

m(ac) = m(bc) = 1.
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a b c

ab ac bc

1

Figure 2. In general, m does not have to preserve all Boolean operations

From these we can see that:

−m(a) = c but m(−a) = m(bc) = 1

and:

0 = m(a · b) 
= m(a) · m(b) = ab.

Thus m is not a homomorphism. However, observe that m[B] = {0, c,−c,1}
is a four element subalgebra of B.13

We can also generalize the example in the following way.

Proposition 24. Let 〈B,C〉 ∈ C4c and suppose that B is an atomic Boolean
algebra. If a ∈ B is an atom and the contact relation C is defined by :

xCy :←→ xOy ∨ x, y ∈ (↓ a)�

then m[B] = {0, a,−a,1}.
Proof. Firstly, observe that for the atom a, by definition of C, we have
m(a) = a.

Secondly, if we take any element x /∈ {0, a,1}, then x /∈↓ a, so we have
two possibilities: either (a) x · a = 0 or (b) a < x. Let y ∈ B such that
y 
= 0. In (a), if yCx, then yO − a, since x ≤ −a. If yO − a, then y /∈↓ a, so
yCx, and so m(x) = −a. In (b), then either y = a and yCx, or yO − a, and
so y /∈↓ a, which means that yCx. So C(x) = O(1) and m(x) = 1.

In consequence m[B] = {0, a,−a,1}.

13The contact algebra from this example is a resolution contact algebra from Section 7.
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Figure 3. An algebra in which all objects are fixed points of the m op-

erator

Example 8. Let us have a look at one more example. We consider the
same BA reduct as in the previous two examples, but this time with contact
determined by the grill (↓ bc)�, i.e., the relation defined by:

xCy :←→ xOy ∨ x, y ∈ (↓ bc)�.

As it can be seen in Figure 3, every element is separated from its com-
plement, thus all objects are fixed points of the operator m.

The reason for all elements to be isolated in the example above is that
if we want to have a non-empty relation C\O for finite structures, we must
require at least two distinct atoms to be in contact. This does not have to be
the case in infinite BCAs (i.e., algebras satisfying the standard (C4) axiom)
as can be seen from Example 4. However we have the following result:

Proposition 25. Let 〈B,C〉 ∈ C4c. If B is an infinite, atomic Boolean
algebra such that aC/ b for all distinct atoms a and b, then every element
x ∈ B is isolated, and so C = O.

Proof. Take x /∈ {0,1} and consider the sets Ax and A−x of all atoms
that are, respectively, below x and −x. If xC−x, that is

∨
AxC

∨
A−x, then

applying (C4c) twice we obtain that there must be atoms a ≤ x and b ≤ −x
such that aCb.

If c is a co-atom of an atomic algebra, then there can only be one atom
a /∈↓ c, so any two different atoms are isolated. In consequence, under the
conditions stated above, if c is a co-atom of B and the contact is given by:

xCy :←→ xOy ∨ x, y ∈ (↓ c)�,

then every element of B is isolated.
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6.2. From Modality to Contact

Let us begin with the following:

Definition 3. Any modal algebra 〈B,♦〉 whose possibility operator satis-
fies the following two conditions:

x ≤ ♦x, (T�)

♦�x ≤ x, (B�)

where �:=−♦−, is called a KTB-algebra.

Lemma 26. If 〈B,♦〉 is a complete KTB-algebra, then:

C�:={〈x, y〉 | x · ♦y 
= 0}
is a contact relation that satisfies (C4c). Moreover, ♦ = m, where m is the
modal operator for C� introduced by (dfm).

Proof. It is obvious that 0C/�x, for any region x. Reflexivity and transitivity
of C� follow, respectively, from (T�) and (B�). Further, if x · ♦(y) 
= 0 and
x ≤ z, then z · ♦(y) 
= 0. Finally, let x ∈ B. If

∨
J ∈ C�(x) for a family

J ⊆ B, then in light of:

C�(x) = (↓ −♦x)�,

we have that there is at least one y ∈ J for which y ∈ C�(x).
By the definition of C�, we have that:

C�(x) = O(♦x).

On the other hand, if we define m in terms of C� by means of (dfm), then
for every x ∈ B, m(x) is the only element such that C�(x) = O(m(x)).
Therefore ♦x = m(x) for all x ∈ B, and the two operators are equal.

6.3. An Isomorphism of Categories

We are going to endow the class of complete Boolean contact algebras that
satisfy axiom (C4c) with suitable morphisms to turn them into a category.
We intend to show that this category is isomorphic to the category of modal
algebras and standard homomorphisms. Note that in the literature, see, for
example, [1,2], there are at least two kinds of morphisms between Boolean
algebras with a subordination relation. Our approach coincides with the
definition given in [2] where similar morphisms are called q-morphisms.
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Definition 4. Given two algebras 〈B1,C1〉, 〈B2,C2〉 ∈ C4c, a mapping
h : B1 → B2 is a p-morphism iff it is a homomorphism such that:

h(x)C2h(y) → xC1y, (P1)

h(z) �2 y → (∃x ∈ B1)(z �1 x ∧ h(x) ≤2 y). (P2)

Of course, (P1) is equivalent to:

x �1 y → h(x) �2 h(y).

Lemma 27. If 〈B1,C1〉, 〈B2,C2〉 ∈ C4c and h : B1 → B2 is a p-morphism,
then h(m1(x)) = m2(h(x)), where m1 and m2 are the modal operators in-
troduced by (dfm).

Proof. Given x ∈ B2, we know that x �1 m1(x), so h(x) �2 h(m1(x)),
which means that h(x)C/2 − h(m1(x)). Therefore −h(m1(x)) /∈ C2(h(x)) =
O(m2(h(x))). Thus −h(m1(x)) · m2(h(x)) = 0, i.e., m2(h(x)) ≤ h(m1(x)).

Now, we will see that h(m1(x)) ≤ m2(h(x)). From h(x) �2 m2(h(x)),
we get that there exists y ∈ B1 such that x �1 y and h(y) ≤ m2(h(x)).
So, xC/1 − y, i.e., −y /∈ C1(x) = O(m1(x)). It follows that m1(x) ≤ y and
therefore h(m1(x)) ≤ h(y) ≤ m2(h(x)).

Lemma 28. If 〈B1,♦1〉, 〈B2,♦2〉 ∈ KTBc and h : B1 → B2 is a homomor-
phism of modal algebras, then h satisfies properties (P1) and (P2) for the
contact relations C�1 and C�2.

Proof. Let us prove (P1) by contraposition. Suppose that xC/♦1y for
x, y ∈ B1. Then, x≤ − ♦1y. Since h is a homomorphism of modal algebras,
we get h(x) ≤ −♦2(h(y)) and thus h(x)C/♦2h(y).

Now, suppose that h(z) �2 y for z ∈ B1 and y ∈ B2. Then
h(z) · ♦2(−y) = 0 and we get h(z) ≤ �2y. Since ♦2 is monotone and by
(B�), h(♦1z) = ♦2(h(z)) ≤ ♦2�2y ≤ y. By (T�), z �1 ♦1z and the result
follows.

Proposition 29. The class C4c together with p-morphisms form a category
with the identity functions serving as the identity morphisms.

Proof. It is obvious that every identity is a homomorphism and satisfies
(P1). For (P2), in the case z � y, it is enough to take y as x. Applying
the definition twice we show that the composition of two p-morphisms is
a p-morphism.

It is clear that the class KTBc of complete KTB algebras together with
the standard homomorphisms form a category. For the remainder of this
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〈B,C〉 〈B,C,m〉

〈B,m〉
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〈B,♦〉 〈B,C�,♦〉

〈B,C�〉

e

G
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Figure 4. In both cases, F and G are compositions of the expansion and

the reduction of suitable structures, with respect to the objects of both

categories

section let us treat C4c and KTBc as categories with suitable objects and
morphisms.

From the above we can see that there is a covariant functor F : C4c→KTBc

which sends a complete BCA satisfying (C4c) to a modal algebra, and
such that for every f ∈ HomC4c(B1, B2), f is also in HomKTBc(B1, B2),
i.e., F (f) = f . Analogously, there is a covariant functor G : KTBc → C4c,
such that for every h ∈ HomKTBc(B1, B2), G(h) = h (see Fig. 4).

Moreover, it is the case that:

G ◦ F = 1C4c and F ◦ G = 1KTBc ,

where 1C4c and 1KTBc are the identity functors for the respective categories.
Thus

Theorem 30. The categories C4c and KTBc are isomorphic.

7. Resolution Contact Algebras

In the final section, we examine a proper subclass of C4c that will serve as
a geometrical interpretation of both the contact relation that satisfies (C4c)
and the modal operator defined via the contact. The inspiration for this
kind of interpretation comes from [8,17,24].

Definition 5. A partition of a Boolean algebra B is any non-empty set P
of non-zero and disjoint regions of B that add up to the unity:

∨
P = 1.

Let B ∈ BAc and let P :={pi | i ∈ I} be a partition. We define the
following relation CP ⊆ B × B:

xCP y :←→ (∃i ∈ I) (xOpi ∧ yOpi).
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x

y

Figure 5. Regions x and y that are in contact with respect to the sixteen-

element partition

It is routine to verify that CP is a contact relation which satisfies (C4c). For
every element pi of the partition, 〈↓ pi,Ci〉 where Ci:=CP ∩ (↓ pi× ↓ pi) is
a BCA with the full contact relation, so in particular, it satisfies (C4c).

We adopt the following conventions: every partition of B is called its res-
olution,14 and the elements of the partition are called cells. Any complete
Boolean algebra expanded with CP for a given partition P is called a reso-
lution contact algebra. RCA is the class of such algebras. In the case xCP y
we say that x is in c-contact with y.

For example, the regions x and y in Figure 5 are in c-contact, since
they overlap a common cell from the sixteen-element partition. From the
perspective of the picture, those regions may seem to be way apart, but we
can think of the resolution as the frame of reference for the comparison of
regions with respect to the CP relation. The finer the resolution, the more
precise approximation of contact between regions, as we can see in Figure 6.

Thus, the fineness of the partition is a counterpart of the precision with
which we can discern regions and their mutual relations. If we cover the
space from Figure 5 with a finer partition, then we have a more precise
notion of contact, and more precise approximations of regions via cells.

It follows from the definition of CP that every element pi of the partition
P indexed by I must be isolated, thus m(pi) = pi. It is also the case that
an arbitrary join of elements of the partition must be isolated. Indeed, let
J � I and K:=I\J . Consider the regions

∨
j∈J pj and

∨
k∈K pk. If they are

in contact, then applying (C4c) twice we get that there are j ∈ J and k ∈ K

14The name comes from [24], yet unlike there we do not limit it to finite partitions.
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x

y

Figure 6. Regions x and y are no longer in contact if we take a finer

partition as the frame of reference

such that pjCP pk, which means that they overlap a common element from
P . But this is only possible if pj = pk, a contradiction. In consequence, if
J ⊆ I, then:

m

⎛

⎝
∨

j∈J

pj

⎞

⎠ =
∨

j∈J

pj .

Further, for any region x define OP (x):={pi ∈ P | xOpi}, the set of all
elements of the partition that overlap x. For any x, OP (x) is called the cell
cover (or c-cover) of x (see Fig. 7).

We have that m(x) =
∨

OP (x), and so if x ≤ pi, for some i ∈ I, then
m(x) = pi. In particular, for any pi which is not an atom, none of its proper
parts is a fixed point of the m operator.

Proposition 31. Let 〈B,CP 〉 be a resolution algebra with a partition P . If
x, y ∈ B, then xCP y iff the c-covers of x and y overlap, i.e., m(x)·m(y) 
= 0.

Proof. The left-to-right implication is true in general, and stems from
(dfm) and the fact that x ≤ m(x) for every region x.

For the right-to-left implication let x, y ∈ B and assume that
m(x) · m(y) 
= 0, so there must be a cell pi that overlaps both m(x) and
m(y). But this means that pi overlaps a cell pj from the c-cover of x, and
a cell pk from the c-cover of y. Since all three are elements of a resolution,
they must be equal: pi = pj = pk. (see Fig 7)

Remark 1. From the above proposition we can see that CP is a counterpart
of a possible contact relation from [8]. However, the right-to-left implication
from Proposition 31 is not always true about the m operator (in the sense
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x

Figure 7. The cell cover of the region x, whose cell interior is empty

that it is not true in every algebra from the class C4c). This can be seen in
a model from Example 6 where we have that m(a) = 1 and m(c) = bc, so
m(a) · m(c) 
= 0. Yet aC/Gc.

Let us make a notion of the fineness of a partition precise, and let us
observe that the finer the partition, the fewer regions are in contact.

Definition 6. Let B be a complete Boolean algebra. Given two partitions,
P and P ′, P is finer than P ′ (in symbols: P � P ′) iff for every p ∈ P there
is a p′ in P ′ such that p ≤ p′. P is strictly finer than P ′ iff P �P ′ and there
is a p ∈ P such that p /∈ P ′.

Proposition 32. Let B be a complete Boolean algebra. Given a sequence
of partitions 〈Pα | α < κ〉 (with κ being an ordinal) such that Pα+1 �Pα, let
us consider the contact relation Cα determined by every Pα. We have that:

β < α → Cα ⊆ Cβ

and if Pα is strictly finer than Pβ, then the inclusion is proper.

Proof. Let x, y ∈ B and suppose that β < α. If xCαy, then there is a
pi ∈ Pα such that pi ∈ OPα

(x) ∩ OPα
(y). Since Pα is finer that Pβ, there is

pj ∈ Pβ such that pi ≤ pj . So pj ∈ OPβ
(x) ∩ OPβ

(y), and in consequence
xCβy.

Suppose now that Pα is strictly finer than Pβ, i.e., there exists
a pi ∈ Pα\Pβ. Thus in Pβ there is pk such that pi < pk. In consequence
there is a non-zero region x such that x < pk and x · pi = 0. Therefore
xC/αpi, but xCβpi, as both x and pi are parts of the same cell pk ∈ Pβ.
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Figure 8. The two triangles are in contact for every contact generated by

any partition that is a refinement of the initial sixteen-element partition

Since the overlapping relation is the smallest contact relation, it must be
the case that for 〈Pα | α < κ〉 as above:

O ⊆
⋂

α<κ

Cα,

and in general, it does not have to be the case that the intersection is exactly
overlap. For example, look at the regular closed sets in [0, 1]2 considered as
a subspace of R2 with the standard topology. If we start with the sixteen-
element partition from Figure 8, the two triangles are in c-contact in every
refinement generated by quadratic subdivisions of cells. Therefore, the in-
tersection of all contact relations 〈Cn | n < ω〉 generated by the partitions
contains the overlap as a proper subset.

However, the intersection of this kind may not be an approximation of
the standard topological contact in RC([0, 1]2), which can be considered as a
weak point of contact relations generated by partitions (in the case we want
to treat them as approximations). For example, no two different cells from
the sixteen-element partition from Figure 8 will ever be in contact with re-
spect to contact relations generated by its refinement, yet as regions of [0, 1]2

(i.e., its regular closed subsets) adjacent cells have non-empty set-theoretical
intersections, so they are in contact under the standard topological inter-
pretation of contact (see page 11).

7.1. Resolution Algebras and Frames of Ultrafilters

Proposition 33. Let 〈B,CP 〉 be a resolution algebra. Let m : B → B be
the operator defined by (dfm). Then, m(m(x)) = m(x) for all x ∈ B, i.e.,
in every resolution algebra m is a closure operator.

Proof. Let x ∈ B. We apply the characterization of m(x) for resolution
contact algebras plus the facts that m is completely additive and that every
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element of the partition is a fixed point of m:

m(m(x)) = m
(∨

OP (x)
)

=
∨

{m(pi) | xOpi} =
∨

{pi | xOpi} = m(x).

In light of the above, for any 〈B,CP 〉 ∈ RCA, the standard Kripke rela-
tion R on the set of ultrafilters of B is an equivalence relation that partitions
the set of ultrafilters into equivalence classes. For any ultrafilter U , let [U ]
be its equivalence class and let UltB/R be the partition of UltB.

Theorem 34. If 〈B,CP 〉 ∈ RCA with a finite resolution P = {pi | i � n}
for some n ∈ ω, then the Kripke relation on the set UltB is an equivalence
relation and there is a one-to-one correspondence f : P → UltB/R between
cells and equivalence classes of ultrafilters.

Proof. Let us consider R and the set UltB/R. For every pi ∈ P define
f(pi):=s(pi), the standard Stone mapping for elements of the partition. The
mapping must be injective, since elements of the partition are pairwise dis-
joint. Further, if s(pi)∩ s(pj) 
= ∅, then pi = pj , and thus s(pi) = s(pj). Still
further, every ultrafilter must be in some s(pi). This follows from the fact
that

∨
P = 1 and P is finite.

It remains to show that for every equivalence class E from UltB/R there
is pi such that s(pi) = E. Take U to be a representative of E, and let pi be
this unique element of the partition that sits inside U . This immediately
entails that U ∈ s(pi). For the other direction, let pi ∈ K . If x ∈ U ,
then x · pi 
= 0, i.e., pi ∈ OP (x). Therefore pi ≤ ∨

OP (x) = m(x), and in
consequence m(x) ∈ K . So U ⊆ m−1[K ], and so K ∈ [U ], as required.

In general, if we have a complete S5-algebra〈B,♦〉, its expansion〈B,♦,C�〉
does not have to be a resolution algebra; that is, there may be no partition P
of B such that CP = C�. For example, take as B any atomless algebra with
♦ as a fixed-point operator. Then ♦ is an S5 operator and in consequence
we have:

xC�y ←→ x · ♦y 
= 0 ←→ x · y 
= 0.

Yet, the algebra is atomless, so for any partition P of B, any element pi

of P must have disjoint non-zero parts x and y, which means that xC/♦y.
Yet, as both x and y overlap pi, it must be the case that xCP y. Therefore
CP 
= C�.

But we have that:

Theorem 35. Given an S5 modal algebra 〈B,♦〉, its expansion 〈B,♦,C�〉
can be embedded into a modal expansion of a resolution algebra.
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Proof. Let R be the accessibility relation on the set of all ultrafilters of
B:

U1 R U2 :←→ U1 ⊆ ♦−1[U2].

Since 〈B,♦〉 is an S5-algebra, R is an equivalence relation. By means of this
take CR to be the contact relation between sets of ultrafilters, i.e.:

ACRD :←→ (∃U1 ∈ A)(∃U2 ∈ D)U1 R U2.

Since P := UltB/R is a partion of P(UltB), the relation:

ACP D :←→ (∃p ∈ P ) A ∩ p 
= ∅ 
= D ∩ p

is a contact relation that satisfies (C4c). We have that CR = CP , since in
the special case of R we have:

U1 R U2 ←→ (∃p ∈ P )p = [U1] = [U2].

We now take the expansion of 〈P(UltB),CR〉 to P:=〈P(UltB), m,CR〉,
and consider the Stone mapping s : B → P(UltB). In particular, we will
see that:

xC♦y ←→ s(x)CRs(y).

Let x, y ∈ B be such that xC♦y, i.e., x·♦y 
= 0 and there exists a U1 ∈ UltB
such that x,♦y ∈ U1. Then, there exists a U2 ∈ UltB such that U1 R U2

and y ∈ U2. So U1 ∈ s(x), U2 ∈ s(y) and we get s(x)CRs(y). On the other
hand, if s(x)CRs(y), there exist U1,U2 ∈ UltB such that U1 R U2, x ∈ U1

and y ∈ U2. So, x,♦y ∈ U1 and we get x · ♦y 
= 0. Therefore, xC♦y.
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