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Abstract. In the present paper we will ask for the lattice L(MVEx) of
subvarieties of the variety defined by the set Ex(MV) of all externally com-
patible identities valid in the variety MV of all MV-algebras. In particular,
we will find all subdirectly irreducible algebras from the classes in the lattice
L(MVEx) and give syntactical and semantical characterization of the class
of algebras defined by P -compatible identities of MV-algebras.

Keywords: MV-algebra; variety; identity; P -compatible identity; equational
base; subdirectly irreducible algebras

1. Introduction

As it is known J. Łukasiewicz (see [9]) introduced a 3-valued proposi-
tional calculus with one designated truth-value. Łukasiewicz and Tarski
[10] generalized this construction to an m-valued propositional calculus
(where m is a natural number or it equals ℵ0) using matrices again
with one designated truth-value. While giving an algebraic proof of
the completeness of the Łukasiewicz infinite-valued sentential calculus,
C. C. Chang introduced MV-algebras. As it is known Boolean algebras
being used to semantically formulate the classical logic are in particular
MV-algebras. Of course, the converse statement is not true, i.e. it is not
the case that each MV-algebra is a Boolean algebra. Chang’s aim was to
adopt a method of prime ideal that had been used for Boolean algebras
to the case of MV-algebras.

Let us recall that the above mentioned theorem states that for any
Boolean algebra A and disjoint an ideal I and a filter F in A, there
is a prime ideal containing I, that is disjoint with F . This theorem
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being formulated in various versions (for example as a relative Linden-
baum lemma known as Łoś-Asser lemma) plays the key role in proofs
of completeness theorems. Chang shows that as regards symbols of +, ·
and − a difference between MV-algebras understood as ordered 6-toples
〈A,+, ·,− , 0, 1〉 and Boolean algebras relies on the lack of the itempo-
tence low for +, while the low of excluded middle has not to be fulfilled
in a given MV-alebra.

An axiomatisation of the 3-valued logic was given by M. Wajsberg
[18]. An axiomatisation of the m-valued, where m 6= ℵ0, with arbitrary
number of designated values had been proposed by J. B. Rosser and
A. R. Turquette [16]. In [10] a hypothesis that ℵ0-valued calculus is
axiomatised by a system with modus ponens and substitution as sole
rules of inference was given. Suggested axioms had the following form:

1. p → (q → p)

2. (p → q) → ((q → r) → (p → r))

3. ((p → q) → q) → ((q → p) → p)

4. ((p → q) → (q → p)) → (q → p)

5. (∼ p → ∼ q) → (q → p).

A. Tarski [17, s. 51] in a footnote indicates Wajserbga [19] as one who
confirmed this hypothesis. Rose and Rosser gave its proof in [15]. An
algebraic proof of the appropriate theorem was given be Chang [1, 2]. In
[7] a description of pure implication logics containing implicational frag-
ment of infinitely many valued Łukasiewicz logic, while in [8], overlogics
of this logic where described.

In the below definition, axioms are treated as a formulation of prop-
erties of particular operations on the set A:

Definition 1.1. An MV-algebra is a system 〈A,+, ·, , 0, 1〉, where A is
a nonempty set, 0 and 1 are constants in the set A, + and · are operations
of arity two in the set A and is a unarny operation on the set A, where
the following equations are fulfilled:

Ax.1 x+ y ≈ y + x Ax.1’. x · y ≈ y · x
Ax.2 x+ (y + z) ≈ (x+ y) + z Ax.2’ x · (y · z) ≈ (x · y) · z

Ax.3 x+ x ≈ 1 Ax.3’ x · x ≈ 0

Ax.4 x+ 1 ≈ 1 Ax.4’ x · 0 ≈ 0

Ax.5 x+ 0 ≈ x Ax.5’ x · 1 ≈ x

Ax.6 (x+ y) ≈ x · y Ax.6’ (x · y) ≈ x+ y

Ax.7 x ≈ (x) Ax.8. 0 ≈ 1
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Ax.9 x ∨ y ≈ y ∨ x Ax.9’ x ∧ y ≈ y ∧ x

Ax.10 x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z Ax.10’ x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z

Ax.11 x+ (y ∧ z) ≈ (x+ y) ∧ (x+ y) Ax.11’ x · (y∨z) ≈ (x ·y) ∨ (x ·y),

where operations ∨ and ∧ are given for any x, y ∈ A as follows:

x ∨ y ≈ (x · y) + y

x ∧ y ≈ (x+ y) · y

Besides we recall:

Definition 1.2. Let MV denote the class of all MV-algebras while
Id(MV)  the set of all identities valid in MV.

Chang mentioned that the above axiomatisation is not very “eco-
nomic”. He stressed however, that it is very intuitive and it way we
recall it. It is obvious that elements 0 and 1, as well as operations +,
·, and ∨ and ∧ are respectively dual. Beside, one assumes that the
operation ·, similarly as in arithmetics bides stronger than +.

This fact that this axiomatisation is not “non-economic”, caused a
search for more elegant axiomatisations. In [3] by an MV-algebra one
understands any algebra A = 〈A, 0, 1,∗ ,⊙, ⊕〉 fulfilling the following
conditions:

Ax.12 x⊙ (y ⊙ z) ≈ (x⊙ y) ⊙ z

Ax.13 x⊙ y ≈ y ⊙ x

Ax.14 x⊙ 0 ≈ 0
Ax.15 x⊙ 1 ≈ x

Ax.16 0∗ ≈ 1
Ax.17 1∗ ≈ 0
Ax.18 (x∗ ⊙ y)∗⊙ ≈ (y∗ ⊙ x)∗ ⊙ x

Ax.19 x⊕ y ≈ (x∗ ⊙ y∗)∗.

It is known, that the set Id(MV) determines a variety (a nonempty
class of algebras that is closed under any subalgebras, arbitrary products
and homomorphic images) and this variety is MV.

When considering MV-algebras as structures in the type 〈2, 2, 1, 0, 0〉
with operations +, ·, , 0, 1 one can formulate a notion of externally com-
patible identities by stipulating that:

Definition 1.3. An identity is externally compatible iff it is of any of
the below form:

ϕ1 ≈ ϕ1 (1.1)

ϕ1 + ϕ2 ≈ ψ1 + ψ2 (1.2)
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ϕ1 · ϕ2 ≈ ψ1 · ψ2 (1.3)

ϕ1 ≈ ψ1, (1.4)

where ϕ1, ϕ2, ψ1, ψ2 are any terms in the type 〈2, 2, 1, 0, 0〉.

Let us notice that some identities valid in the class of MV-algebras are
externally compatible, but some are not. For example the commutative
low x+y ≈ y+x is an externally compatible identity, while de Morgana
low (x · y) ≈ x+ y is not.

2. Syntax and semantics

While searching for an equational basis of the class MVEx, it is conve-
nient to consider this class in the type 〈2, 2, 1〉. Thus, we assume that
the constant 0 can be defined for example as x · x. The constant 1 can
be defined as well, for example as x+ x.

Let V a variety in the type τ fulfilling the following conditions:

(2.1) There is a non-trivial unary term q(x), such that for any f ∈ F ,
the identity q(f(x0, . . . , xτ(f)−1)) ≈ q(f(q(x0), . . . , q(xτ(f)−1))) belongs
to Id(V ).

(2.2) If [f ]P is a nullary block (i.e., a block with only nullary oper-
ations) and g, h ∈ [f ]P , then there is a non-trivializing, unary term
qg,h(x), such that the most external operational symbol in the term
qg,h(x) belongs to [f ]P and moreover the following identities:

g(x0, . . . , xτ(g)−1) = qg,h(q(g(x0, . . . , xτ(g)−1))),

h(x0, . . . , xτ(h)−1) = qg,h(q(h(x0, . . . , xτ(h)−1)))

belong to Id(V ).

(2.3) If [f ]P is a nullary block of the partition P , then for any g ∈ [f ]P
identity f = g belongs to Id(V ).

Let B be an equational basis of a variety V . We define a set B∗ of
identities of the typu τ with the help of the following three conditions:

(2.4) Identities (2.1), (2.2) and (2.3) belong to B∗.

(2.5) If φ = ψ belong to B, then the identity q(φ) = q(ψ) belongs
to B∗.

(2.6) B∗ includes only identities described in conditions (2.4) and (2.5).
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It has been shown in [13] that the following theorem holds:

Theorem 2.1. If B is an equational basis of a variety V fulfilling the

conditions (2.1), (2.2) and (2.3), then the set B∗ defined by the condi-

tions (2.4), (2.5) and (2.6) is an equational basis of the variety VP .

Besides, we have:

Theorem 2.2 ([11]). For any nontrivial variety V ∈ L(MOL) there is a

lattice embedding of the lattice B into V , where B is a class of Boolean

algebras.

The the below theorem holds:

Theorem 2.3. The following identities:

Ax.1. x+ y ≈ y + x Ax.1′. x · y ≈ y · x

Ax.2. x+ (y + z) ≈ (x+ y) + z Ax.2′. x · (y · z) ≈ (x · y) · z

Ax.3. x+ x ≈ y + y Ax.3′. x · x ≈ y · y

Ax.4. x+ 1 ≈ 1 Ax.4′. x · 0 ≈ 0

Ax.5. x+ y + 0 ≈ x+ y Ax.5′. x · y · 1 ≈ x · y

(x+ 0) · y ≈ x · y (x · 1) + y ≈ x+ y

x+ 0 ≈ x x · 1 ≈ x

Ax.6. x+ y + z ≈ x · y + z Ax.6′. x · y + z ≈ (x+ y) + z

(x+ y) · z ≈ (x · y) · z (x · y) · z ≈ (x+ y) · z

x+ y · 0 ≈ x · y x · y ≈ x+ y

Ax.7. x ≈ x Ax.8. 0 + x ≈ 1 + x

x+ y ≈ x+ y 0 · x ≈ 1 · x

x · y ≈ x · y 0 ≈ 1

Ax.9. x ∨ y ≈ y ∨ x Ax.9′. x ∧ y ≈ y ∧ x

Ax.10. x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z Ax.10′. x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z

Ax.11. (x+ (y ∧ z)) + t ≈ ((x+ y) ∧ (x+ y)) + t

(x+ (y ∧ z)) · t ≈ ((x+ y) ∧ (x+ y)) · t

x+ (y ∧ z) ≈ (x+ y) ∧ (x+ y)

Ax.11’. (x · (y ∨ z)) + t ≈ (x · y) ∨ (x · z) + t

(x · (y ∨ z)) · t ≈ (x · y) ∨ (x · z) · t

x · (y ∨ z) ≈ (x · y) ∨ (x · z)

constitute an equational basis od the class MVEx.
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Schetch of the proof. Let us notice that the class MVEx fulfils as-
sumptions of Theorem 2.1. The set composed of identities Ax.1–Ax.11
and Ax.1’–Ax.11’ is denoted by B1. Let B2 denote the set of identities
given by Theorem 2.1 when applied to the class MVEx. We skip details
of the proof since it comes down to showing that Cn(B1) = Cn(B2) and
goes in the standard way. ⊣

Let us consider algebras A = (A;FA) and I = (I;FI) of type τ and
a partition P of the set F . The algebra A is a P -dispersion of I (see [6],
[13]) iff there exists a partition {Ai}i∈I of A and there exists a family
{c[f ]P

}f∈F of mappings c[f ]P
: I → A satisfying the following conditions:

(2.7) For each i ∈ I: c[f ]P
(i) ∈ Ai.

(2.8) For each f ∈ F and for each ai ∈ Aki
, i = 0, . . . , τ(f)−1, fA(a0,

. . . , aτ(f)−1) = c[f ]P
(fI(k0, . . . , kτ(f)−1)).

(2.9) If f ∈ [g]P , then for each i ∈ I: c[f ]P
(i) = c[g]P

(i).

The following theorem holds:

Theorem 2.4 ([13]). If P is a partition of a set F and V is a variety of

the type τ fulfilling conditions (2.1), (2.2) and (2.3), then A belongs to

the class VP iff A is a P -dispersion of a ceratin algebra belonging to V .

The following theorem is obvious:

Theorem 2.5 ([6]). The lattice L(Ex(τ)) is isomorphic with the lattice

ΠF + 1 of all partitions of the set F with the unit element 1.

Theorem 2.6 ([4]). Let V be a variety of the type τ , such that for

a ceratin unary term φ(x), which is not a variable, then the identity

φ(x) ≈ x belongs to the set Id(V ). Let moreover a partition P of the set

F fulfils the condition:

VP = DP (V ). (VP )

Thus, lattices L(V ) and P (V ) are isomorphic.

Let us consider the following example.

Example 2.1. Let an algebra A = 〈{0, 1
2

+
, 1

2

·

, 1}; +, ·, 〉 be a dispersion
of the following algebra B = ({0, 1

2 , 1}; +, ·, ) (see Diagram 1). Then:

c+(k) = c·(k) = c (k) = k, for k ∈ {0, 1}, c+(1
2) = c (1

2) = 1
2

+
, and

c·(
1
2) = 1

2

·

. Moreover, one can see that 1
2

·

= 1
2

+
. Thus, the identity

x ≈ x is not fulfilled in the algebra A.
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i

A

B

0 1
2

1

0 1

1
2

·

1
2

+

Diagram 1. Identities – algebras

It can be shown that this algebra verifies all identities externally
compatible valid in the class MVEx. It is the case since this class is
fulfils assumption of Theorem 2.4. So, the next theorem follows:

Theorem 2.7. The class MVEx equals the class all dispersions of all

MV-algebras.

We have of course also a more general theorem:

Theorem 2.8 (Characterisation of the class MVEx). For any partition

P the class MVP equals the class of all dispersions of all P -dispersions

of algebras from the class MV.

3. Subdirectly irreducible algebras from the variety

of MVn-algebras

In the present section we describe all subdirectly irreducible algebras
from the class of MVn-algebras.

3.1. Variety of MVn-algebras

In [5] R. Grigolia indicated algebras being semantical counterparts of
n-valued logics for any 2 < n < ℵ0. The class MVn of all MVn-algebras
is a subclass of the class of all MV-algebras. It is determined by the
set of all identities valid in the class of all MV-algebras extended by the
following identities:

Ax.12. (n− 1)x+ x ≈ (n− 1)x

Ax.12’. xn−1 · x ≈ xn−1

and for n > 3, additionally the following axioms are added:
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Ax.13.
(

(jx) ·(x̄+((j−1) ·x)−)
)(n−1)

≈ 0

Ax.13’. (n− 1)
(

xj + (x̄ · (xj−1)−)
)

≈ 1,

where 1 < j < n− 1 and n− 1 is divided by j.

We obtain MVn  a class of MVn-algebras. Thus, each Boolean al-
gebra is a MVn-algebra for every 2 < n < ℵ0 and each MVn-algebra for
every 2 < n < ℵ0 is a MV-algebra.

Let Ln = 〈Ln,+, ·,−, 1, 0〉, where Ln = {0, 1
n−1 , . . . ,

n−2
n−1 , 1} and for

any x, y ∈ Ln:

• x+ y = min(1, x+ y),

• x · y = max(0, x+ y − 1),

• x̄ = 1 − x.

Let us recall:

Theorem 3.1 ([5]). Each MVn-algebra A is isomorphic to a subdirect

product of algebras Lm, where m ¬ n and m− 1 divides n− 1.

Let an algebra A belong to the class MVnEx. It is known that A is
a dispersion of a ceratin algebras I from the variety MVn.

The following cases can occur (cf [14]):

1. If |Ai| = 1 for every i ∈ I, then A belongs to the variety MVn,
since each function cf determines an isomorphism of algebras I and
A. Thus, A is subdirectly-irreducible iff it fulfils the condition of
Theorem 3.1 concerning subdirectly-irreducible MVn-algebras.

2. If |I| = 1 (i.e., A is a trivial algebra), then A belongs to the class
determined by the externally compatible identities in the type 〈2,
2, 1, 0, 0〉. One can easily prove that in this case the algebra A
is subdirectly irreducible iff it is a 2-element algebra defined be all
externally compatible identities in the type 〈2, 2, 1, 0, 0〉.

I

i j

Ai Aj
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3. Let |I| > 1 and there is i ∈ I, such that |Ai| > 1 (see the above
figure). For any such i we define a relation Ri w A stipulating for
a, b ∈ A as follows:

aRib iff a = b or a, b ∈ Ai.

The relation Ri is a congruence that differs from ∆. Now, for any
i, j ∈ I, such that i 6= j and |Ai| 6= 1 6= |Aj |, A is subdirectly
irreducible. It is so since Ri ∩Rj = ∆.

|Ai| > 2

i
I

4. The is exactly one element i ∈ I, such that the cardinality of the set
Ai bigger than 1. Without the loss of generality we can assume that
is bigger than 2 (see the above diagram). Then, for every a ∈ Ai0

one can define a congruence relation R(a) stipulating for any x, y:

xR(a)y iff x = y or x, y ∈ A \ {a}.

Each of relations R(a) is a congruence relation different from ∆ and

⋂

a∈Ai0

R(a) = ∆.

Thus A is subdirectly irreducible (see Diagram 2).

5. The is exactly one element i ∈ I, for which Ai = {01, 02}, where 01 is
different from 02 and is a function cf that is defined as follows (again
see the above picture):

C+(i0) = C·(i0) = C−(i0) = O2.

In this case we consider a congruence R
′′

defined in the following
way:

aR
′′

b iff a = b or a, b ∈ A \ {O1}.
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I

i0

O1

O2

A

C+(i0) = C·(i0) = C−(i0) = O2

Diagram 2. Identities – algebras

One can easily check that:

Ri0
∩R

′′

= ∆.

Thus, A is subdirectly irreducible.

Obviously, among dispersions only these described below can be sub-
directly irreducible algebras: there is exactly one element i0 ∈ I, taki że
|Ai0

| = 2, say Ai0
= {O1, O2} and there is a partition {F1, F2} of the set

{+, ·,−} with blocks F1, F2 6= ∅ such that cf (i0) = Ok for f ∈ Fk where
k = 1, 2.

It appears that the above mentioned dispersions are indeed subdi-
rectly irreducible.

Thus, we have the following, main result of this part:

Theorem 3.2. Let A be an algebra from the class MVnEx
. The alge-

bra A is subdirectly irreducible iff at least one of the following three

conditions holds:

1. A belongs to the variety of MVn-algebras and is subdirectly irre-

ducible,

2. A is a 2-element algebra from the class defined by all externally

compatible identities in the type 〈2, 2, 1, 0, 0〉,

3. A is a dispersion of an algebra I from the class of MVn-algebras

and there is exactly one element i0 ∈ I such that |Ai0
| = 2, say

Ai0
= {O1, O2}, and there is a partition {F1, F2} of the set {+, ·,−},

where F1, F2 6= ∅ and cf (i0) = Ok for f ∈ Fk (k = 1, 2).
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4. The lattice of varieties generated by Ex(MV)

One can see that Ex(MV) is a proper subset of the set Id(MV). We
conclude that the variety of MV-algebr is a proper subvariety of the
variety MVEx. Obviously, each subvariety of the class MV is also a
proper subvariety of the variety MVEx.

Let us stat with an analysis of the variety MV-algebr. For any variety
V in the type τ we put:

P (V ) = {K ∈ L(VP ) : Id(K) = P (K)}.

We use the following notation (see [4]):

P (MV) = {K ∈ L(MOLP ) : Id(K) = P (MV)}.

The set P (MV) with the inclusion as an order is a lattice. One can say
referring to the class MV, that it is F -normal and considering it in the
w type 〈2, 2, 1〉 we see that there are five partitions of the set of symbol
of basic operations. Applying theorems 2.8, 2.5, and 2.6 we get:

Theorem 4.1. For any partition P of the set {+, ·, } the lattice P (MV)

is isomorphic to L(MV).

In the below diagram we present mutual positions of lattices P (MV)

in the lattice L(MVEx).

MV

MVN

MVP1

MVP2 MVP3

MVEx

T

TN

TP1
TP3

TP2

TEx

Subvariety of MV-algebras were examined by R. Grigolia, Y. Komori,
A. Di Nola, and A. Lettieri. Lettieri and Di Nola [3] have given an equa-
tional basis for all MV-varieties, while Komori determined the lattice od
subvarieties of the variety of MV-algebras (see [8]).
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Following [3] we define for any natural i > 1 a set δ(i) as follows:

δ(i) = {n ∈ Z : 1 ¬ n and n dzieli i}.

On the other hand, we any finite, nonempty set J of positive numbers,
we put:

∆(i, J) = {d ∈ δ(i)\
⋃

j∈J

δ(j)}

In the case that J = ∅, we stipulate:

∆(i, J) = δ(i).

We recall the following result:

Theorem 4.2 ([3]). Let V be a proper subvariety of the variety MV.

Then there are finite sets I and J of natural numbers bigger than 1, such

that I ∩ J 6= ∅ and for any MV-algebra A, A belongs to V iff A fulfils

the following identities:

((n+ 1)xn)2 ≈ 2xn+1, gdzie n = max{I ∪ J}; (4.5)

(pxp−1)n−1 ≈ (n+ 1)xp (4.6)

and for any positive number p, such that 1 < p < n which does not

divide any number from I ∪ J ;

(n+ 1)xq ≈ (n+ 2)xq, for any q ∈
⋃

j∈J

∆(i, J). (4.7)

Let us recall that the smallest proper subvariety of the variety od
MV-algebras is the class of Boolean algebras. This class is characterised
be a single identity x+x ≈ x (i.e., in this context, to determine the class
of Boolean algebras it is enough to consider the identity x+ x ≈ x and
all identities fulfilled in the class MV and the obtained set close under
the operator Cn).

Let us recall:

Theorem 4.3 ([11]). The lattice of all nontrivial subvarieties of the

variety MOLEx,that are generated be the sum of the set Ex(MOL) and

the set of all identities of one variable in the type 〈2, 2, 1〉, is isomorphic

to the lattice (L(MOL)\T) × B.
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For any class V from the lattice L(MV) we consider a set {K ∈
L(VEx) : V ⊆ K ⊆ VEx}. Of course, this set is a lattice which is denoted
by V .

The following two theorems are true. We skip proofs since they are
similar to proofs of theorems 2.2 and 4.3.

Theorem 4.4. For every nontrivial variety V ∈ L(MV) there is a lattice

embedding of the lattice B into V , where B is a class of Boolean algebras.

This theorem has been illustrated on Diagram 3

TEx

TP1
TP3

TP2

T

T
1
Ex

MVEx

MV

MV

VEx

V

V

BEx

B

B

Diagram 3. The lattice of subvarieties of the variety MVEx

Although we do not know the full description of the whole lattice
L(MVEx), we do know how the sublattice of this lattice generated by
identities of one variable looks like. Strictly speaking the following the-
orem holds:

Theorem 4.5. The lattice of all subvarieties of the variety MVEx that

are generated by identities of one variable is isomorphic to the lattice

T ∪ ((L(MV)\T ) × B).

Having analysed structures of subdirectly irreducible algebras in the
class determined be externally compatible identities of MVn-algebras we
see that there is quite a lot of them  if I may say so  of specific “types
of algebras”. It is connected to the fact, that the lattice L(MVEx) is
also quite big and  is some sense  rather complicated. A “horizontal”
analysis  selecting varieties described by Komori, Di Nola, and Lettieri,
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as well as a “vertical” analysis  stressing a correlation with the class
of Boolean algebr, can be treated as a partial solution of the problem
mentioned at the very beginning of the paper.

Finally, we have the following:

Hypothesis. In the lattice L(MVEx) there is no other elements than
those predicted by Theorem 4.5.
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