Logic and Logical Philosophy Volume 25 (2016), 35–50 DOI: 10.12775/LLP.2015.010

### Krystyna Mruczek-Nasieniewska

## ON SOME EXTENSIONS OF THE CLASS OF MV-ALGEBRAS

**Abstract.** In the present paper we will ask for the lattice  $L(\mathbf{MV}_{Ex})$  of subvarieties of the variety defined by the set  $Ex(\mathbf{MV})$  of all externally compatible identities valid in the variety  $\mathbf{MV}$  of all MV-algebras. In particular, we will find all subdirectly irreducible algebras from the classes in the lattice  $L(\mathbf{MV}_{Ex})$  and give syntactical and semantical characterization of the class of algebras defined by *P*-compatible identities of MV-algebras.

 $\label{eq:keywords: MV-algebra; variety; identity; $P$-compatible identity; equational base; subdirectly irreducible algebras$ 

### 1. Introduction

As it is known J. Łukasiewicz (see [9]) introduced a 3-valued propositional calculus with one designated truth-value. Łukasiewicz and Tarski [10] generalized this construction to an *m*-valued propositional calculus (where *m* is a natural number or it equals  $\aleph_0$ ) using matrices again with one designated truth-value. While giving an algebraic proof of the completeness of the Łukasiewicz infinite-valued sentential calculus, C. C. Chang introduced MV-algebras. As it is known Boolean algebras being used to semantically formulate the classical logic are in particular MV-algebras. Of course, the converse statement is not true, i.e. it is not the case that each MV-algebra is a Boolean algebra. Chang's aim was to adopt a method of prime ideal that had been used for Boolean algebras to the case of MV-algebras.

Let us recall that the above mentioned theorem states that for any Boolean algebra  $\mathfrak{A}$  and disjoint an ideal I and a filter F in  $\mathfrak{A}$ , there is a prime ideal containing I, that is disjoint with F. This theorem being formulated in various versions (for example as a relative Lindenbaum lemma known as Łoś-Asser lemma) plays the key role in proofs of completeness theorems. Chang shows that as regards symbols of  $+, \cdot$ and - a difference between MV-algebras understood as ordered 6-toples  $\langle A, +, \cdot, -, 0, 1 \rangle$  and Boolean algebras relies on the lack of the itempotence low for +, while the low of excluded middle has not to be fulfilled in a given MV-alebra.

An axiomatisation of the 3-valued logic was given by M. Wajsberg [18]. An axiomatisation of the *m*-valued, where  $m \neq \aleph_0$ , with arbitrary number of designated values had been proposed by J.B. Rosser and A.R. Turquette [16]. In [10] a hypothesis that  $\aleph_0$ -valued calculus is axiomatised by a system with modus ponens and substitution as sole rules of inference was given. Suggested axioms had the following form:

 $\begin{array}{ll} 1. \ p \to (q \to p) \\ 2. \ (p \to q) \to ((q \to r) \to (p \to r)) \\ 3. \ ((p \to q) \to q) \to ((q \to p) \to p) \\ 4. \ ((p \to q) \to (q \to p)) \to (q \to p) \\ 5. \ (\sim p \to \sim q) \to (q \to p). \end{array}$ 

A. Tarski [17, s. 51] in a footnote indicates Wajserbga [19] as one who confirmed this hypothesis. Rose and Rosser gave its proof in [15]. An algebraic proof of the appropriate theorem was given be Chang [1, 2]. In [7] a description of pure implication logics containing implicational fragment of infinitely many valued Łukasiewicz logic, while in [8], overlogics of this logic where described.

In the below definition, axioms are treated as a formulation of properties of particular operations on the set A:

DEFINITION 1.1. An MV-algebra is a system  $\langle A, +, \cdot, -, 0, 1 \rangle$ , where A is a nonempty set, 0 and 1 are constants in the set A, + and  $\cdot$  are operations of arity two in the set A and - is a unarry operation on the set A, where the following equations are fulfilled:

| Ax.2 $x + (y + z) \approx (x + y) + z$ Ax.2' $x \cdot (y \cdot z) \approx (x \cdot y)$                                             | $) \cdot z$ |
|------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Ax.3 $x + \overline{x} \approx 1$ Ax.3' $x \cdot \overline{x} \approx 0$                                                           |             |
| Ax.4 $x + 1 \approx 1$ Ax.4 $x \cdot 0 \approx 0$                                                                                  |             |
| Ax.5 $x + 0 \approx x$ Ax.5' $x \cdot 1 \approx x$                                                                                 |             |
| Ax.6 $\overline{(x+y)} \approx \overline{x} \cdot \overline{y}$ Ax.6' $\overline{(x \cdot y)} \approx \overline{x} + \overline{y}$ |             |
| Ax.7 $x \approx \overline{(\overline{x})}$ Ax.8. $\overline{0} \approx 1$                                                          |             |

 $\begin{array}{lll} \mathrm{Ax.9} & x \lor y \approx y \lor x & \mathrm{Ax.9}' & x \land y \approx y \land x \\ \mathrm{Ax.10} & x \lor (y \lor z) \approx (x \lor y) \lor z & \mathrm{Ax.10}' & x \land (y \land z) \approx (x \land y) \land z \\ \mathrm{Ax.11} & x + (y \land z) \approx (x + y) \land (x + y) & \mathrm{Ax.11}' & x \cdot (y \lor z) \approx (x \cdot y) \lor (x \cdot y), \end{array}$ 

where operations  $\lor$  and  $\land$  are given for any  $x, y \in A$  as follows:

 $x \lor y \approx (x \cdot \overline{y}) + y$  $x \land y \approx (x + \overline{y}) \cdot y$ 

Besides we recall:

DEFINITION 1.2. Let  $\mathbf{MV}$  denote the class of all MV-algebras while  $Id(\mathbf{MV})$  — the set of all identities valid in  $\mathbf{MV}$ .

Chang mentioned that the above axiomatisation is not very "economic". He stressed however, that it is very intuitive and it way we recall it. It is obvious that elements 0 and 1, as well as operations +,  $\cdot$ , and  $\vee$  and  $\wedge$  are respectively dual. Beside, one assumes that the operation  $\cdot$ , similarly as in arithmetics bides stronger than +.

This fact that this axiomatisation is not "non-economic", caused a search for more elegant axiomatisations. In [3] by an MV-algebra one understands any algebra  $\mathfrak{A} = \langle A, 0, 1, *, \odot, \oplus \rangle$  fulfilling the following conditions:

 $\begin{array}{lll} \operatorname{Ax.12} & x \odot (y \odot z) \approx (x \odot y) \odot z \\ \operatorname{Ax.13} & x \odot y \approx y \odot x \\ \operatorname{Ax.14} & x \odot 0 \approx 0 \\ \operatorname{Ax.15} & x \odot 1 \approx x \\ \operatorname{Ax.16} & 0^* \approx 1 \\ \operatorname{Ax.17} & 1^* \approx 0 \\ \operatorname{Ax.18} & (x^* \odot y)^* \odot \approx (y^* \odot x)^* \odot x \\ \operatorname{Ax.19} & x \oplus y \approx (x^* \odot y^*)^*. \end{array}$ 

It is known, that the set  $Id(\mathbf{MV})$  determines a variety (a nonempty class of algebras that is closed under any subalgebras, arbitrary products and homomorphic images) and this variety is  $\mathbf{MV}$ .

When considering MV-algebras as structures in the type (2, 2, 1, 0, 0) with operations  $+, \cdot, -, 0, 1$  one can formulate a notion of externally compatible identities by stipulating that:

DEFINITION 1.3. An identity is *externally compatible* iff it is of any of the below form:

$$\varphi_1 \approx \varphi_1 \tag{1.1}$$

$$\varphi_1 + \varphi_2 \approx \psi_1 + \psi_2 \tag{1.2}$$

$$\varphi_1 \cdot \varphi_2 \approx \psi_1 \cdot \psi_2 \tag{1.3}$$

$$\overline{\varphi_1} \approx \psi_1,$$
 (1.4)

where  $\varphi_1, \varphi_2, \psi_1, \psi_2$  are any terms in the type  $\langle 2, 2, 1, 0, 0 \rangle$ .

Let us notice that some identities valid in the class of MV-algebras are externally compatible, but some are not. For example the commutative low  $x + y \approx y + x$  is an externally compatible identity, while de Morgana low  $(x \cdot y) \approx \overline{x} + \overline{y}$  is not.

### 2. Syntax and semantics

While searching for an equational basis of the class  $MV_{Ex}$ , it is convenient to consider this class in the type  $\langle 2, 2, 1 \rangle$ . Thus, we assume that the constant 0 can be defined for example as  $x \cdot \overline{x}$ . The constant 1 can be defined as well, for example as  $x + \overline{x}$ .

Let V a variety in the type  $\tau$  fulfilling the following conditions:

(2.1) There is a non-trivial unary term q(x), such that for any  $f \in F$ , the identity  $q(f(x_0, \ldots, x_{\tau(f)-1})) \approx q(f(q(x_0), \ldots, q(x_{\tau(f)-1})))$  belongs to Id(V).

(2.2) If  $[f]_P$  is a nullary block (i.e., a block with only nullary operations) and  $g,h \in [f]_P$ , then there is a non-trivializing, unary term  $q_{g,h}(x)$ , such that the most external operational symbol in the term  $q_{g,h}(x)$  belongs to  $[f]_P$  and moreover the following identities:

$$g(x_0, \dots, x_{\tau(g)-1}) = q_{g,h}(q(g(x_0, \dots, x_{\tau(g)-1}))),$$
  
$$h(x_0, \dots, x_{\tau(h)-1}) = q_{g,h}(q(h(x_0, \dots, x_{\tau(h)-1})))$$

belong to Id(V).

(2.3) If  $[f]_P$  is a nullary block of the partition P, then for any  $g \in [f]_P$  identity f = g belongs to Id(V).

Let **B** be an equational basis of a variety V. We define a set  $\mathbf{B}^*$  of identities of the typu  $\tau$  with the help of the following three conditions:

(2.4) Identities (2.1), (2.2) and (2.3) belong to **B**<sup>\*</sup>.

(2.5) If  $\phi = \psi$  belong to **B**, then the identity  $q(\phi) = q(\psi)$  belongs to **B**<sup>\*</sup>.

(2.6)  $\mathbf{B}^*$  includes only identities described in conditions (2.4) and (2.5).

It has been shown in [13] that the following theorem holds:

THEOREM 2.1. If **B** is an equational basis of a variety V fulfilling the conditions (2.1), (2.2) and (2.3), then the set  $\mathbf{B}^*$  defined by the conditions (2.4), (2.5) and (2.6) is an equational basis of the variety  $V_P$ .

Besides, we have:

THEOREM 2.2 ([11]). For any nontrivial variety  $V \in \mathcal{L}(MOL)$  there is a lattice embedding of the lattice  $\overline{\mathbf{B}}$  into  $\overline{V}$ , where **B** is a class of Boolean algebras.

The the below theorem holds:

THEOREM 2.3. The following identities:

| Ax.1.   | $x + y \approx y + x$                                                                  | Ax.1'. $x \cdot y \approx y \cdot x$                                           |  |
|---------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| Ax.2.   | $x + (y + z) \approx (x + y) + z$                                                      | Ax.2'. $x \cdot (y \cdot z) \approx (x \cdot y) \cdot z$                       |  |
| Ax.3.   | $x + \overline{x} \approx y + \overline{y}$                                            | Ax.3'. $x \cdot \overline{x} \approx y \cdot \overline{y}$                     |  |
| Ax.4.   | $x + 1 \approx 1$                                                                      | Ax.4'. $x \cdot 0 \approx 0$                                                   |  |
| Ax.5.   | $x + y + 0 \approx x + y$                                                              | Ax.5'. $x \cdot y \cdot 1 \approx x \cdot y$                                   |  |
|         | $(x+0)\cdot y\approx x\cdot y$                                                         | $(x\cdot 1) + y \approx x + y$                                                 |  |
|         | $\overline{x+0}\approx\overline{x}$                                                    | $\overline{x\cdot 1} pprox \overline{x}$                                       |  |
| Ax.6.   | $\overline{x+y} + z \approx \overline{x} \cdot \overline{y} + z$                       | Ax.6'. $\overline{x \cdot y} + z \approx (\overline{x} + \overline{y}) + z$    |  |
|         | $(\overline{x+y}) \cdot z \approx (\overline{x} \cdot \overline{y}) \cdot z$           | $(\overline{x \cdot y}) \cdot z \approx (\overline{x} + \overline{y}) \cdot z$ |  |
|         | $\overline{\overline{x+y}} \cdot 0 \approx \overline{\overline{x} \cdot \overline{y}}$ | $\overline{\overline{x\cdot y}}pprox\overline{\overline{x+y}}$                 |  |
| Ax.7.   | $\overline{\overline{x}} \approx \overline{x}$                                         | Ax.8. $\overline{0} + x \approx 1 + x$                                         |  |
|         | $\overline{\overline{x}} + y \approx x + y$                                            | $\overline{0} \cdot x \approx 1 \cdot x$                                       |  |
|         | $\overline{\overline{x}} \cdot y \approx x \cdot y$                                    | $\overline{\overline{0}} pprox \overline{1}$                                   |  |
| Ax.9.   | $x \vee y \approx y \vee x$                                                            | Ax.9'. $x \wedge y \approx y \wedge x$                                         |  |
| Ax.10.  | $x \vee (y \vee z) \approx (x \vee y) \vee z$                                          | Ax.10′. $x \wedge (y \wedge z) \approx (x \wedge y) \wedge z$                  |  |
| Ax.11.  | $(x+(y\wedge z))+t\approx ((x+y)\wedge (x+y))+t$                                       |                                                                                |  |
|         | $(x+(y\wedge z))\cdot t\approx ((x+y)\wedge (x+y))\cdot t$                             |                                                                                |  |
|         | $\overline{x + (y \wedge z)} \approx \overline{(x + y) \wedge (x)}$                    | +y)                                                                            |  |
| Ax.11'. | $(x \cdot (y \lor z)) + t \approx (x \cdot y) \lor (x \cdot z) + t$                    |                                                                                |  |
|         | $(x \cdot (y \vee z)) \cdot t \approx (x \cdot y) \vee (x \cdot z) \cdot t$            |                                                                                |  |
|         | $\overline{x \cdot (y \lor z)} \approx \overline{(x \cdot y) \lor (x \cdot z)}$        |                                                                                |  |

constitute an equational basis of the class  $MV_{Ex}$ .

SCHETCH OF THE PROOF. Let us notice that the class  $\mathbf{MV}_{Ex}$  fulfils assumptions of Theorem 2.1. The set composed of identities Ax.1-Ax.11and Ax.1'-Ax.11' is denoted by  $B_1$ . Let  $B_2$  denote the set of identities given by Theorem 2.1 when applied to the class  $\mathbf{MV}_{Ex}$ . We skip details of the proof since it comes down to showing that  $Cn(B_1) = Cn(B_2)$  and goes in the standard way.

Let us consider algebras  $\mathfrak{A} = (A; F^{\mathfrak{A}})$  and  $\mathfrak{I} = (I; F^{\mathfrak{I}})$  of type  $\tau$  and a partition P of the set F. The algebra  $\mathfrak{A}$  is a P-dispersion of  $\mathfrak{I}$  (see [6], [13]) iff there exists a partition  $\{A_i\}_{i\in I}$  of A and there exists a family  $\{c_{[f]_P}\}_{f\in F}$  of mappings  $c_{[f]_P}: I \to A$  satisfying the following conditions:

(2.7) For each  $i \in I$ :  $c_{[f]_P}(i) \in A_i$ .

(2.8) For each  $f \in F$  and for each  $a_i \in A_{k_i}$ ,  $i = 0, ..., \tau(f) - 1$ ,  $f^{\mathfrak{A}}(a_0, ..., a_{\tau(f)-1}) = c_{[f]_P}(f^{\mathfrak{I}}(k_0, ..., k_{\tau(f)-1})).$ 

(2.9) If  $f \in [g]_P$ , then for each  $i \in I$ :  $c_{[f]_P}(i) = c_{[g]_P}(i)$ .

The following theorem holds:

THEOREM 2.4 ([13]). If P is a partition of a set F and V is a variety of the type  $\tau$  fulfilling conditions (2.1), (2.2) and (2.3), then  $\mathfrak{A}$  belongs to the class  $V_P$  iff  $\mathfrak{A}$  is a P-dispersion of a certain algebra belonging to V.

The following theorem is obvious:

THEOREM 2.5 ([6]). The lattice  $\mathcal{L}(Ex(\tau))$  is isomorphic with the lattice  $\Pi_F + 1$  of all partitions of the set F with the unit element 1.

THEOREM 2.6 ([4]). Let V be a variety of the type  $\tau$ , such that for a ceratin unary term  $\phi(x)$ , which is not a variable, then the identity  $\phi(x) \approx x$  belongs to the set Id(V). Let moreover a partition P of the set F fulfils the condition:

$$V_P = D_P(V). (V_P)$$

Thus, lattices  $\mathcal{L}(V)$  and  $P^{(V)}$  are isomorphic.

Let us consider the following example.

Example 2.1. Let an algebra  $\mathcal{A} = \langle \{0, \frac{1}{2}^+, \frac{1}{2}^\cdot, 1\}; +, \cdot, -\rangle$  be a dispersion of the following algebra  $\mathcal{B} = (\{0, \frac{1}{2}, 1\}; +, \cdot, -)$  (see Diagram 1). Then:  $c_+(k) = c_-(k) = c_-(k) = k$ , for  $k \in \{0, 1\}, c_+(\frac{1}{2}) = c_-(\frac{1}{2}) = \frac{1}{2}^+$ , and  $c_-(\frac{1}{2}) = \frac{1}{2}^\cdot$ . Moreover, one can see that  $\overline{\frac{1}{2}} = \frac{1}{2}^+$ . Thus, the identity  $\overline{x} \approx x$  is not fulfilled in the algebra  $\mathcal{A}$ .



41



Diagram 1. Identities – algebras

It can be shown that this algebra verifies all identities externally compatible valid in the class  $\mathbf{MV}_{Ex}$ . It is the case since this class is fulfils assumption of Theorem 2.4. So, the next theorem follows:

THEOREM 2.7. The class  $\mathbf{MV}_{Ex}$  equals the class all dispersions of all MV-algebras.

We have of course also a more general theorem:

THEOREM 2.8 (Characterisation of the class  $\mathbf{MV}_{Ex}$ ). For any partition P the class  $\mathbf{MV}_{P}$  equals the class of all dispersions of all P-dispersions of algebras from the class  $\mathbf{MV}$ .

# 3. Subdirectly irreducible algebras from the variety of MV<sub>n</sub>-algebras

In the present section we describe all subdirectly irreducible algebras from the class of  $MV_n$ -algebras.

### 3.1. Variety of $MV_n$ -algebras

In [5] R. Grigolia indicated algebras being semantical counterparts of n-valued logics for any  $2 < n < \aleph_0$ . The class  $\mathbf{MV}_n$  of all  $\mathbf{MV}_n$ -algebras is a subclass of the class of all  $\mathbf{MV}$ -algebras. It is determined by the set of all identities valid in the class of all  $\mathbf{MV}$ -algebras extended by the following identities:

Ax.12. 
$$(n-1)x + x \approx (n-1)x$$
  
Ax.12'.  $x^{n-1} \cdot x \approx x^{n-1}$ 

and for n > 3, additionally the following axioms are added:

Ax.13.  $((jx) \cdot (\bar{x} + ((j-1) \cdot x)^{-}))^{(n-1)} \approx 0$ Ax.13'.  $(n-1)(x^{j} + (\bar{x} \cdot (x^{j-1})^{-})) \approx 1$ ,

where 1 < j < n-1 and n-1 is divided by j.

We obtain  $\mathbf{MV}_n$  – a class of  $\mathbf{MV}_n$ -algebras. Thus, each Boolean algebra is a  $\mathbf{MV}_n$ -algebra for every  $2 < n < \aleph_0$  and each  $\mathbf{MV}_n$ -algebra for every  $2 < n < \aleph_0$  is a  $\mathbf{MV}$ -algebra.

Let  $\mathcal{L}_n = \langle L_n, +, \cdot, -, 1, 0 \rangle$ , where  $L_n = \{0, \frac{1}{n-1}, \dots, \frac{n-2}{n-1}, 1\}$  and for any  $x, y \in L_n$ :

- $x + y = \min(1, x + y),$
- $x \cdot y = \max(0, x + y 1),$
- $\bar{x} = 1 x$ . Let us recall:

THEOREM 3.1 ([5]). Each  $MV_n$ -algebra  $\mathcal{A}$  is isomorphic to a subdirect product of algebras  $\mathcal{L}_m$ , where  $m \leq n$  and m-1 divides n-1.

Let an algebra  $\mathcal{A}$  belong to the class  $\mathbf{MV}_{nEx}$ . It is known that  $\mathcal{A}$  is a dispersion of a certain algebras  $\mathcal{I}$  from the variety  $\mathbf{MV}_n$ .

The following cases can occur (cf [14]):

- 1. If  $|A_i| = 1$  for every  $i \in I$ , then  $\mathcal{A}$  belongs to the variety  $\mathbf{MV}_n$ , since each function  $c_f$  determines an isomorphism of algebras  $\mathcal{I}$  and  $\mathcal{A}$ . Thus,  $\mathcal{A}$  is subdirectly-irreducible iff it fulfils the condition of Theorem 3.1 concerning subdirectly-irreducible  $\mathbf{MV}_n$ -algebras.
- If |I| = 1 (i.e., A is a trivial algebra), then A belongs to the class determined by the externally compatible identities in the type ⟨2, 2, 1, 0, 0⟩. One can easily prove that in this case the algebra A is subdirectly irreducible iff it is a 2-element algebra defined be all externally compatible identities in the type ⟨2, 2, 1, 0, 0⟩.



3. Let |I| > 1 and there is  $i \in I$ , such that  $|A_i| > 1$  (see the above figure). For any such i we define a relation  $R_i \le A$  stipulating for  $a, b \in A$  as follows:

$$aR_ib$$
 iff  $a = b$  or  $a, b \in A_i$ .

The relation  $R_i$  is a congruence that differs from  $\Delta$ . Now, for any  $i, j \in I$ , such that  $i \neq j$  and  $|A_i| \neq 1 \neq |A_j|$ ,  $\mathcal{A}$  is subdirectly irreducible. It is so since  $R_i \cap R_j = \Delta$ .



4. The is exactly one element  $i \in I$ , such that the cardinality of the set  $A_i$  bigger than 1. Without the loss of generality we can assume that is bigger than 2 (see the above diagram). Then, for every  $a \in A_{i_0}$  one can define a congruence relation R(a) stipulating for any x, y:

$$xR(a)y$$
 iff  $x = y$  or  $x, y \in A \setminus \{a\}$ .

Each of relations R(a) is a congruence relation different from  $\Delta$  and

$$\bigcap_{a \in A_{i_0}} R(a) = \Delta$$

Thus  $\mathcal{A}$  is subdirectly irreducible (see Diagram 2).

5. The is exactly one element  $i \in I$ , for which  $A_i = \{0_1, 0_2\}$ , where  $0_1$  is different from  $0_2$  and is a function  $c_f$  that is defined as follows (again see the above picture):

$$C_{+}(i_0) = C_{-}(i_0) = C_{-}(i_0) = O_2.$$

In this case we consider a congruence  $R^{''}$  defined in the following way:

$$aR'' b$$
 iff  $a = b$  or  $a, b \in A \setminus \{O_1\}$ .



Diagram 2. Identities – algebras

One can easily check that:

$$R_{i_0} \cap R^{''} = \Delta.$$

Thus,  $\mathcal{A}$  is subdirectly irreducible.

Obviously, among dispersions only these described below can be subdirectly irreducible algebras: there is exactly one element  $i_0 \in I$ , taki że  $|A_{i_0}| = 2$ , say  $A_{i_0} = \{O_1, O_2\}$  and there is a partition  $\{F_1, F_2\}$  of the set  $\{+, \cdot, -\}$  with blocks  $F_1, F_2 \neq \emptyset$  such that  $c_f(i_0) = O_k$  for  $f \in F_k$  where k = 1, 2.

It appears that the above mentioned dispersions are indeed subdirectly irreducible.

Thus, we have the following, main result of this part:

THEOREM 3.2. Let  $\mathcal{A}$  be an algebra from the class  $\mathbf{MV}_{n_{Ex}}$ . The algebra  $\mathcal{A}$  is subdirectly irreducible iff at least one of the following three conditions holds:

- 1.  $\mathcal{A}$  belongs to the variety of  $MV_n$ -algebras and is subdirectly irreducible,
- 2.  $\mathcal{A}$  is a 2-element algebra from the class defined by all externally compatible identities in the type  $\langle 2, 2, 1, 0, 0 \rangle$ ,
- 3. A is a dispersion of an algebra  $\mathcal{I}$  from the class of  $MV_n$ -algebras and there is exactly one element  $i_0 \in I$  such that  $|A_{i_0}| = 2$ , say  $A_{i_0} = \{O_1, O_2\}$ , and there is a partition  $\{F_1, F_2\}$  of the set  $\{+, \cdot, -\}$ , where  $F_1, F_2 \neq \emptyset$  and  $c_f(i_0) = O_k$  for  $f \in F_k$  (k = 1, 2).

### 4. The lattice of varieties generated by Ex(MV)

One can see that  $Ex(\mathbf{MV})$  is a proper subset of the set  $Id(\mathbf{MV})$ . We conclude that the variety of MV-algebr is a proper subvariety of the variety  $\mathbf{MV}_{Ex}$ . Obviously, each subvariety of the class  $\mathbf{MV}$  is also a proper subvariety of the variety  $\mathbf{MV}_{Ex}$ .

Let us stat with an analysis of the variety MV-algebr. For any variety V in the type  $\tau$  we put:

$$P^{(V)} = \{ K \in \mathcal{L}(V_P) : Id(K) = P(K) \}.$$

We use the following notation (see [4]):

$$P^{(\mathbf{MV})} = \{ K \in \mathcal{L}(\mathbf{MOL}_P) \colon Id(K) = P(\mathbf{MV}) \}.$$

The set  $P^{(MV)}$  with the inclusion as an order is a lattice. One can say referring to the class **MV**, that it is *F*-normal and considering it in the w type  $\langle 2, 2, 1 \rangle$  we see that there are five partitions of the set of symbol of basic operations. Applying theorems 2.8, 2.5, and 2.6 we get:

THEOREM 4.1. For any partition P of the set  $\{+, \cdot, -\}$  the lattice  $P^{(MV)}$  is isomorphic to  $\mathcal{L}(MV)$ .

In the below diagram we present mutual positions of lattices  $P^{(MV)}$ in the lattice  $\mathcal{L}(MV_{Ex})$ .



Subvariety of MV-algebras were examined by R. Grigolia, Y. Komori, A. Di Nola, and A. Lettieri. Lettieri and Di Nola [3] have given an equational basis for all **MV**-varieties, while Komori determined the lattice of subvarieties of the variety of MV-algebras (see [8]).

45



#### K. MRUCZEK-NASIENIEWSKA

Following [3] we define for any natural i > 1 a set  $\delta(i)$  as follows:

 $\delta(i) = \{ n \in \mathbf{Z} : 1 \leq n \text{ and } n \text{ dzieli } i \}.$ 

On the other hand, we any finite, nonempty set J of positive numbers, we put:

$$\Delta(i,J) = \{ d \in \delta(i) \setminus \bigcup_{j \in J} \delta(j) \}$$

In the case that  $J = \emptyset$ , we stipulate:

$$\Delta(i,J) = \delta(i).$$

We recall the following result:

THEOREM 4.2 ([3]). Let V be a proper subvariety of the variety **MV**. Then there are finite sets I and J of natural numbers bigger than 1, such that  $I \cap J \neq \emptyset$  and for any MV-algebra  $\mathfrak{A}$ ,  $\mathfrak{A}$  belongs to V iff  $\mathfrak{A}$  fulfils the following identities:

$$((n+1)x^n)^2 \approx 2x^{n+1}, \ gdzie \ n = \max\{I \cup J\};$$
 (4.5)

$$(px^{p-1})^{n-1} \approx (n+1)x^p \tag{4.6}$$

and for any positive number p, such that  $1 which does not divide any number from <math>I \cup J$ ;

$$(n+1)x^q \approx (n+2)x^q$$
, for any  $q \in \bigcup_{j \in J} \Delta(i, J)$ . (4.7)

Let us recall that the smallest proper subvariety of the variety of MV-algebras is the class of Boolean algebras. This class is characterised be a single identity  $x + x \approx x$  (i.e., in this context, to determine the class of Boolean algebras it is enough to consider the identity  $x + x \approx x$  and all identities fulfilled in the class **MV** and the obtained set close under the operator Cn).

Let us recall:

THEOREM 4.3 ([11]). The lattice of all nontrivial subvarieties of the variety  $\mathbf{MOL}_{Ex}$ , that are generated be the sum of the set  $Ex(\mathbf{MOL})$  and the set of all identities of one variable in the type  $\langle 2, 2, 1 \rangle$ , is isomorphic to the lattice  $(\mathcal{L}(\mathbf{MOL}) \setminus \mathbf{T}) \times \mathbf{\overline{B}}$ .

For any class V from the lattice  $\mathcal{L}(\mathbf{MV})$  we consider a set  $\{K \in \mathcal{L}(V_{Ex}): V \subseteq K \subseteq V_{Ex}\}$ . Of course, this set is a lattice which is denoted by  $\overline{V}$ .

The following two theorems are true. We skip proofs since they are similar to proofs of theorems 2.2 and 4.3.

THEOREM 4.4. For every nontrivial variety  $V \in L(\mathbf{MV})$  there is a lattice embedding of the lattice  $\overline{\mathbf{B}}$  into  $\overline{V}$ , where  $\mathbf{B}$  is a class of Boolean algebras.

This theorem has been illustrated on Diagram 3



Diagram 3. The lattice of subvarieties of the variety  $\mathbf{MV}_{Ex}$ 

Although we do not know the full description of the whole lattice  $\mathcal{L}(\mathbf{MV}_{Ex})$ , we do know how the sublattice of this lattice generated by identities of one variable looks like. Strictly speaking the following theorem holds:

THEOREM 4.5. The lattice of all subvarieties of the variety  $\mathbf{MV}_{Ex}$  that are generated by identities of one variable is isomorphic to the lattice  $\overline{T} \cup ((L(\mathbf{MV}) \setminus T) \times \overline{\mathbf{B}}).$ 

Having analysed structures of subdirectly irreducible algebras in the class determined be externally compatible identities of  $MV_n$ -algebras we see that there is quite a lot of them — if I may say so — of specific "types of algebras". It is connected to the fact, that the lattice  $\mathcal{L}(\mathbf{MV}_{Ex})$  is also quite big and — is some sense — rather complicated. A "horizontal" analysis — selecting varieties described by Komori, Di Nola, and Lettieri,

47

as well as a "vertical" analysis—stressing a correlation with the class of Boolean algebr, can be treated as a partial solution of the problem mentioned at the very beginning of the paper.

Finally, we have the following:

HYPOTHESIS. In the lattice  $\mathcal{L}(\mathbf{MV}_{Ex})$  there is no other elements than those predicted by Theorem 4.5.

### References

- Chang, C. C., "Algebraic analysis of many valued logics", Transactions of the American Mathematical Society, 88 (1958): 467–490. DOI:10.1090/ S0002-9947-1958-0094302-9 and DOI:10.2307/1993227
- Chang, C. C., "A new proof of the completeness of Łukasiewicz axioms", Transactions of the American Mathematical Society, 93 (1959): 74–80. DOI:10.1090/S0002-9947-1959-0122718-1
- [3] Di Nola, A., and A. Lettieri, "Equational characterization of all varieties of MV-zlgebras", *Journal of Algebra*, 221 (1999): 463–474.
- [4] Gajewska-Kurdziel, K., "On the lattice of some varieties defined by P-compatible identities", Zeszyty Naukowe Uniwersytetu Opolskiego, Matematyka, 29 (1995): 45–47.
- [5] Grigolia, R., "Algebraic analysis of Łukasiewicz-Tarski's n-valued logical systems", pages 81–92 in Selected Papers on Łukasiewicz Sentential Calcui, R. Wójcicki (ed.), Zakład Narodowy imienia Ossolińskich, Wydawnictwo Polskiej Akademii Nauk: Wrocław, Warszawa, Kraków, Gdańsk, 1977.
- [6] Hałkowska, K., "Lattice of equational theories of P-compatible varieties", pages 587–595 in Logic at Work. Essays dedicated to the memory of Helena Rasiowa, E. Orłowska (ed.), Springer: Heidelberg, New York, 1998.
- [7] Komori, Y., "Super-Łukasiewicz implicational logics", Nagoya Mathematical Journal, 72 (1978): 127–133.
- [8] Komori, Y., "Super Łukasiewicz propositional logics", Nagoya Mathematical Journal, 84 (1981): 119–133.
- [9] Łukasiewicz, J., "O logice trójwartosciowej", Ruch filozoficzny, 5 (1920): 169–171.
- [10] Łukasiewicz, J., and A. Tarski, "Untersuchungen über den Aussagenkalkül", Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, 23 Classe iii (1930): 30–50.
- [11] Mruczek-Nasieniewska, K., "The varieties defined by P-compatible identities of modular ortholattices", *Studia Logica* 95 (2010): 21–35. DOI:10. 1007/s11225-010-9255-5

49

- [12] Mundici, D., "Interpretation of AF CU-algebras in Lukasiewicz sentential calculus", J. Funct. Anal., 65 (1986): 15–63.
- [13] Płonka, J., "P-compatible identities and their applications to classical algebras", Math. Slovaca, 40, 1 (1990): 21–30.
- [14] Płonka, J., "Subdirectly irreducible algebras in varieties defined by externally compatible identities", *Studia Scientarium Hungaria*, 27 (1992): 267–271.
- [15] Rose, A., and J. B. Rosser, "Fragments of many-valued statement calculi", *Trans. Amer. Math. Soc.*, 87 (1958): 1–53. DOI:10.2307/1993083 and DOI:10.1090/S0002-9947-1958-0094299-1
- [16] Rosser, J. B., and A. R. Turquette, "Axiom schemes for *m*-valued propositional calculi", *The Journal of Symbolic Logic*, 10, 3 (1945): 61-82.
  MR13718, http://projecteuclid.org/euclid.jsl/1183391454
- [17] Tarski, A., Logic, Semantic, Metamathematics, Oxford Univ. Press, 1956.
- [18] Wajsberg, M., "Aksjomatyzacja trójwartosciowego rachunku zdań", Comptes rendue des seauces de la Societe des Sciences et des Lettres de Varsovie, Classe III, 24 (1931): 259–262.
- [19] Wajsberg, M,., "Beiträge zum Metaaussagenkalkül I", Monatshefte für Mathematik und Physik, 42 (1935): 221–242.

KRYSTYNA MRUCZEK-NASIENIEWSKA Department of Logic Nicolaus Copernicus University in Toruń Toruń, Poland mruczek@uni.torun.pl