# Krystyna Mruczek-Nasieniewska 

# ON SOME EXTENSIONS OF THE CLASS OF MV-ALGEBRAS 


#### Abstract

In the present paper we will ask for the lattice $L\left(\mathbf{M V}_{E x}\right)$ of subvarieties of the variety defined by the set $E x(\mathbf{M V})$ of all externally compatible identities valid in the variety MV of all MV-algebras. In particular, we will find all subdirectly irreducible algebras from the classes in the lattice $L\left(\mathbf{M V}_{E x}\right)$ and give syntactical and semantical characterization of the class of algebras defined by $P$-compatible identities of MV-algebras.


Keywords: MV-algebra; variety; identity; $P$-compatible identity; equational base; subdirectly irreducible algebras

## 1. Introduction

As it is known J. Łukasiewicz (see [9]) introduced a 3-valued propositional calculus with one designated truth-value. Łukasiewicz and Tarski [10] generalized this construction to an $m$-valued propositional calculus (where $m$ is a natural number or it equals $\aleph_{0}$ ) using matrices again with one designated truth-value. While giving an algebraic proof of the completeness of the Łukasiewicz infinite-valued sentential calculus, C. C. Chang introduced MV-algebras. As it is known Boolean algebras being used to semantically formulate the classical logic are in particular MV-algebras. Of course, the converse statement is not true, i.e. it is not the case that each MV-algebra is a Boolean algebra. Chang's aim was to adopt a method of prime ideal that had been used for Boolean algebras to the case of MV-algebras.

Let us recall that the above mentioned theorem states that for any Boolean algebra $\mathfrak{A}$ and disjoint an ideal $I$ and a filter $F$ in $\mathfrak{A}$, there is a prime ideal containing $I$, that is disjoint with $F$. This theorem
being formulated in various versions (for example as a relative Lindenbaum lemma known as Łoś-Asser lemma) plays the key role in proofs of completeness theorems. Chang shows that as regards symbols of + , • and - a difference between MV-algebras understood as ordered 6-toples $\langle A,+, \cdot,-, 0,1\rangle$ and Boolean algebras relies on the lack of the itempotence low for + , while the low of excluded middle has not to be fulfilled in a given MV-alebra.

An axiomatisation of the 3 -valued logic was given by M. Wajsberg [18]. An axiomatisation of the $m$-valued, where $m \neq \aleph_{0}$, with arbitrary number of designated values had been proposed by J. B. Rosser and A. R. Turquette [16]. In [10] a hypothesis that $\aleph_{0}$-valued calculus is axiomatised by a system with modus ponens and substitution as sole rules of inference was given. Suggested axioms had the following form:

1. $p \rightarrow(q \rightarrow p)$
2. $(p \rightarrow q) \rightarrow((q \rightarrow r) \rightarrow(p \rightarrow r))$
3. $((p \rightarrow q) \rightarrow q) \rightarrow((q \rightarrow p) \rightarrow p)$
4. $((p \rightarrow q) \rightarrow(q \rightarrow p)) \rightarrow(q \rightarrow p)$
5. $(\sim p \rightarrow \sim q) \rightarrow(q \rightarrow p)$.
A. Tarski [17, s. 51] in a footnote indicates Wajserbga [19] as one who confirmed this hypothesis. Rose and Rosser gave its proof in [15]. An algebraic proof of the appropriate theorem was given be Chang [1, 2]. In [7] a description of pure implication logics containing implicational fragment of infinitely many valued Łukasiewicz logic, while in [8], overlogics of this logic where described.

In the below definition, axioms are treated as a formulation of properties of particular operations on the set $A$ :

Definition 1.1. An MV-algebra is a system $\langle A,+, \cdot,-, 0,1\rangle$, where $A$ is a nonempty set, 0 and 1 are constants in the set $A,+$ and $\cdot$ are operations of arity two in the set $A$ and ${ }^{-}$is a unarny operation on the set $A$, where the following equations are fulfilled:

| Ax. $1 x+y \approx y+x$ | Ax.1', | $x \cdot y \approx y \cdot x$ |
| :--- | :--- | :--- |
| Ax. $2 x+(y+z) \approx(x+y)+z$ | Ax.2' | $x \cdot(y \cdot z) \approx(x \cdot y) \cdot z$ |
| Ax. $3 x+\bar{x} \approx 1$ | Ax.3' | $x \cdot \bar{x} \approx 0$ |
| Ax. $4 x+1 \approx 1$ | Ax.4' | $x \cdot 0 \approx 0$ |
| Ax. $5 x+0 \approx x$ | Ax.5 | $x \cdot 1 \approx x$ |
| Ax. $6 \overline{(x+y)} \approx \bar{x} \cdot \bar{y}$ | Ax.6' | $\overline{(x \cdot y)} \approx \bar{x}+\bar{y}$ |
| Ax. $7 x \approx(\bar{x})$ | Ax.8. | $\overline{0} \approx 1$ |


| Ax. 9 | $x \vee y \approx y \vee x$ | Ax. $9, x \wedge y \approx y \wedge x$ |
| ---: | :--- | :--- |
| Ax. 10 | $x \vee(y \vee z) \approx(x \vee y) \vee z$ | Ax.10' $x \wedge(y \wedge z) \approx(x \wedge y) \wedge z$ |
| Ax. 11 | $x+(y \wedge z) \approx(x+y) \wedge(x+y)$ | Ax.11' $x \cdot(y \vee z) \approx(x \cdot y) \vee(x \cdot y)$, | where operations $\vee$ and $\wedge$ are given for any $x, y \in A$ as follows:

$$
\begin{aligned}
& x \vee y \approx(x \cdot \bar{y})+y \\
& x \wedge y \approx(x+\bar{y}) \cdot y
\end{aligned}
$$

Besides we recall:
Definition 1.2. Let MV denote the class of all MV-algebras while $I d(\mathbf{M V})$ - the set of all identities valid in MV.

Chang mentioned that the above axiomatisation is not very "economic". He stressed however, that it is very intuitive and it way we recall it. It is obvious that elements 0 and 1 , as well as operations + , $\cdot$, and $\vee$ and $\wedge$ are respectively dual. Beside, one assumes that the operation $\cdot$, similarly as in arithmetics bides stronger than + .

This fact that this axiomatisation is not "non-economic", caused a search for more elegant axiomatisations. In [3] by an MV-algebra one understands any algebra $\mathfrak{A}=\left\langle A, 0,1,{ }^{*}, \odot, \oplus\right\rangle$ fulfilling the following conditions:

```
Ax. \(12 x \odot(y \odot z) \approx(x \odot y) \odot z\)
Ax. \(13 x \odot y \approx y \odot x\)
Ax. \(14 x \odot 0 \approx 0\)
Ax. \(15 x \odot 1 \approx x\)
Ax. \(160^{*} \approx 1\)
Ax. 17 1 \(^{*} \approx 0\)
Ax. \(18\left(x^{*} \odot y\right)^{*} \odot \approx\left(y^{*} \odot x\right)^{*} \odot x\)
Ax. \(19 x \oplus y \approx\left(x^{*} \odot y^{*}\right)^{*}\).
```

It is known, that the set $I d(\mathbf{M V})$ determines a variety (a nonempty class of algebras that is closed under any subalgebras, arbitrary products and homomorphic images) and this variety is MV.

When considering MV-algebras as structures in the type $\langle 2,2,1,0,0\rangle$ with operations $+, \cdot,-, 0,1$ one can formulate a notion of externally compatible identities by stipulating that:

Definition 1.3. An identity is externally compatible iff it is of any of the below form:

$$
\begin{align*}
\varphi_{1} & \approx \varphi_{1}  \tag{1.1}\\
\varphi_{1}+\varphi_{2} & \approx \psi_{1}+\psi_{2} \tag{1.2}
\end{align*}
$$

$$
\begin{align*}
\varphi_{1} \cdot \varphi_{2} & \approx \psi_{1} \cdot \psi_{2}  \tag{1.3}\\
\overline{\varphi_{1}} & \approx \overline{\psi_{1}} \tag{1.4}
\end{align*}
$$

where $\varphi_{1}, \varphi_{2}, \psi_{1}, \psi_{2}$ are any terms in the type $\langle 2,2,1,0,0\rangle$.
Let us notice that some identities valid in the class of MV-algebras are externally compatible, but some are not. For example the commutative low $x+y \approx y+x$ is an externally compatible identity, while de Morgana low $\overline{(x \cdot y)} \approx \bar{x}+\bar{y}$ is not.

## 2. Syntax and semantics

While searching for an equational basis of the class $\mathrm{MV}_{E x}$, it is convenient to consider this class in the type $\langle 2,2,1\rangle$. Thus, we assume that the constant 0 can be defined for example as $x \cdot \bar{x}$. The constant 1 can be defined as well, for example as $x+\bar{x}$.

Let $V$ a variety in the type $\tau$ fulfilling the following conditions:
(2.1) There is a non-trivial unary term $q(x)$, such that for any $f \in F$, the identity $q\left(f\left(x_{0}, \ldots, x_{\tau(f)-1}\right)\right) \approx q\left(f\left(q\left(x_{0}\right), \ldots, q\left(x_{\tau(f)-1}\right)\right)\right)$ belongs to $\operatorname{Id}(V)$.
(2.2) If $[f]_{P}$ is a nullary block (i.e., a block with only nullary operations) and $g, h \in[f]_{P}$, then there is a non-trivializing, unary term $q_{g, h}(x)$, such that the most external operational symbol in the term $q_{g, h}(x)$ belongs to $[f]_{P}$ and moreover the following identities:

$$
\begin{aligned}
& g\left(x_{0}, \ldots, x_{\tau(g)-1}\right)=q_{g, h}\left(q\left(g\left(x_{0}, \ldots, x_{\tau(g)-1}\right)\right)\right), \\
& h\left(x_{0}, \ldots, x_{\tau(h)-1}\right)=q_{g, h}\left(q\left(h\left(x_{0}, \ldots, x_{\tau(h)-1}\right)\right)\right)
\end{aligned}
$$

belong to $\operatorname{Id}(V)$.
(2.3) If $[f]_{P}$ is a nullary block of the partition $P$, then for any $g \in[f]_{P}$ identity $f=g$ belongs to $I d(V)$.

Let $\mathbf{B}$ be an equational basis of a variety $V$. We define a set $\mathbf{B}^{*}$ of identities of the typu $\tau$ with the help of the following three conditions:
(2.4) Identities (2.1), (2.2) and (2.3) belong to $\mathbf{B}^{*}$.
(2.5) If $\phi=\psi$ belong to $\mathbf{B}$, then the identity $q(\phi)=q(\psi)$ belongs to $\mathbf{B}^{*}$.
(2.6) $\quad \mathbf{B}^{*}$ includes only identities described in conditions (2.4) and (2.5).

It has been shown in [13] that the following theorem holds:
Theorem 2.1. If $\mathbf{B}$ is an equational basis of a variety $V$ fulfilling the conditions (2.1), (2.2) and (2.3), then the set $\mathbf{B}^{*}$ defined by the conditions (2.4), (2.5) and (2.6) is an equational basis of the variety $V_{P}$.

Besides, we have:
Theorem 2.2 ([11]). For any nontrivial variety $V \in \mathcal{L}($ MOL $)$ there is a lattice embedding of the lattice $\overline{\mathbf{B}}$ into $\bar{V}$, where $\mathbf{B}$ is a class of Boolean algebras.

The the below theorem holds:
Theorem 2.3. The following identities:

| Ax.1. | $x+y \approx y+x$ | Ax.1' $\cdot x \cdot y \approx y \cdot x$ |
| :---: | :---: | :---: |
| x. 2. | $x+(y+z) \approx(x+y)+z$ | Ax. $2^{\prime} \cdot x \cdot(y \cdot z) \approx(x \cdot y) \cdot z$ |
| Ax.3. | $x+\bar{x} \approx y+\bar{y}$ | Ах.3' $\cdot x \cdot \bar{x} \approx y \cdot \bar{y}$ |
| Ax.4. | $x+1 \approx 1$ | Ax. $4^{\prime} \cdot x \cdot 0 \approx 0$ |
| Ax.5. | $\begin{aligned} & x+y+0 \approx x+y \\ & (x+0) \cdot y \approx x \cdot y \\ & \overline{x+0} \approx \bar{x} \end{aligned}$ | $\begin{aligned} & \text { Ax. } 5^{\prime} \cdot x \cdot y \cdot 1 \approx x \cdot y \\ & \quad \frac{(x \cdot 1)+y \approx x+y}{\overline{x \cdot 1} \approx \bar{x}} \end{aligned}$ |
| Ax.6. | $\begin{aligned} & \overline{x+y}+z \approx \bar{x} \cdot \bar{y}+z \\ & (\overline{x+y}) \cdot z \approx(\bar{x} \cdot \bar{y}) \cdot z \\ & \overline{\overline{x+y}} \cdot 0 \approx \overline{\bar{x} \cdot \bar{y}} \end{aligned}$ | $\begin{aligned} & \text { Ax. } 6^{\prime} \cdot \overline{x \cdot y}+z \approx(\bar{x}+\bar{y})+z \\ & \quad(\overline{x \cdot y}) \cdot z \approx(\bar{x}+\bar{y}) \cdot z \\ & \overline{\overline{x \cdot y}} \approx \overline{\bar{x}+\bar{y}} \end{aligned}$ |
| Ax.7. | $\begin{aligned} & \overline{\bar{x}} \approx \bar{x} \\ & \overline{\bar{x}}+y \approx x+y \\ & \overline{\bar{x}} \cdot y \approx x \cdot y \end{aligned}$ | $\begin{gathered} \text { Ax.8. } \overline{0}+x \approx 1+x \\ \overline{0} \cdot x \approx 1 \cdot x \\ \overline{\overline{0}} \approx \overline{1} \end{gathered}$ |
| Ax.9. | $x \vee y \approx y \vee x$ | Ax. $9^{\prime} . x \wedge y \approx y \wedge x$ |
| Ax. 10. | $x \vee(y \vee z) \approx(x \vee y) \vee z$ | Ax. $10^{\prime} \cdot x \wedge(y \wedge z) \approx(x \wedge y) \wedge z$ |
| Ax.11. | $\begin{aligned} & (x+(y \wedge z))+t \approx((x+ \\ & (x+(y \wedge z)) \cdot t \approx((x+y \end{aligned}$ | $\begin{aligned} & \wedge(x+y))+t \\ & \wedge(x+y)) \cdot t \end{aligned}$ |
| Ax.11'. | $\begin{aligned} & \overline{x+(y \wedge z)} \approx \overline{(x+y) \wedge(x} \\ & (x \cdot(y \vee z))+t \approx(x \cdot y) \vee \\ & (x \cdot(y \vee z)) \cdot t \approx(x \cdot y) \vee( \end{aligned}$ | $\begin{aligned} & \overline{+y)} \\ & (x \cdot z)+t \\ & x \cdot z) \cdot t \end{aligned}$ |
|  | $\overline{x \cdot(y \vee z)} \approx \overline{(x \cdot y) \vee(x \cdot z)}$ |  |

constitute an equational basis od the class $\mathbf{M} \mathbf{V}_{E x}$.

Schetch of the proof. Let us notice that the class $\mathbf{M V}_{E x}$ fulfils assumptions of Theorem 2.1. The set composed of identities Ax.1-Ax. 11 and Ax.1'-Ax.11' is denoted by $B_{1}$. Let $B_{2}$ denote the set of identities given by Theorem 2.1 when applied to the class $\mathbf{M} \mathbf{V}_{E x}$. We skip details of the proof since it comes down to showing that $\operatorname{Cn}\left(B_{1}\right)=\operatorname{Cn}\left(B_{2}\right)$ and goes in the standard way.

Let us consider algebras $\mathfrak{A}=\left(A ; F^{\mathfrak{A}}\right)$ and $\mathfrak{I}=\left(I ; F^{\mathfrak{T}}\right)$ of type $\tau$ and a partition $P$ of the set $F$. The algebra $\mathfrak{A}$ is a $P$-dispersion of $\mathfrak{I}$ (see [6], [13]) iff there exists a partition $\left\{A_{i}\right\}_{i \in I}$ of $A$ and there exists a family $\left\{c_{[f]_{P}}\right\}_{f \in F}$ of mappings $c_{[f]_{P}}: I \rightarrow A$ satisfying the following conditions:
(2.7) For each $i \in I: c_{[f]_{P}}(i) \in A_{i}$.
(2.8) For each $f \in F$ and for each $a_{i} \in A_{k_{i}}, i=0, \ldots, \tau(f)-1, f^{\mathfrak{A}}\left(a_{0}\right.$, $\left.\ldots, a_{\tau(f)-1}\right)=c_{[f]_{P}}\left(f^{\mathfrak{J}}\left(k_{0}, \ldots, k_{\tau(f)-1}\right)\right)$.
(2.9) If $f \in[g]_{P}$, then for each $i \in I: c_{[f]_{P}}(i)=c_{[g]_{P}}(i)$.

The following theorem holds:
Theorem 2.4 ([13]). If $P$ is a partition of a set $F$ and $V$ is a variety of the type $\tau$ fulfilling conditions (2.1), (2.2) and (2.3), then $\mathfrak{A}$ belongs to the class $V_{P}$ iff $\mathfrak{A}$ is a $P$-dispersion of a ceratin algebra belonging to $V$.

The following theorem is obvious:
Theorem 2.5 ([6]). The lattice $\mathcal{L}(E x(\tau))$ is isomorphic with the lattice $\Pi_{F}+1$ of all partitions of the set $F$ with the unit element 1 .
Theorem 2.6 ([4]). Let $V$ be a variety of the type $\tau$, such that for a ceratin unary term $\phi(x)$, which is not a variable, then the identity $\phi(x) \approx x$ belongs to the set $I d(V)$. Let moreover a partition $P$ of the set $F$ fulfils the condition:

$$
\begin{equation*}
V_{P}=D_{P}(V) . \tag{P}
\end{equation*}
$$

Thus, lattices $\mathcal{L}(V)$ and $P^{(V)}$ are isomorphic.
Let us consider the following example.
Example 2.1. Let an algebra $\mathcal{A}=\left\langle\left\{0, \frac{1}{2}^{+}, \frac{1_{2}}{2}, 1\right\} ;+, \cdot,-\right\rangle$ be a dispersion of the following algebra $\mathcal{B}=\left(\left\{0, \frac{1}{2}, 1\right\} ;+, \cdot,-\right)$ (see Diagram 1). Then: $c_{+}(k)=c .(k)=c-(k)=k$, for $k \in\{0,1\}, c_{+}\left(\frac{1}{2}\right)=c-\left(\frac{1}{2}\right)=\frac{1}{2}^{+}$, and c. $\left(\frac{1}{2}\right)=\frac{1}{2}^{\cdot}$. Moreover, one can see that $\overline{\overline{\frac{1}{2}^{+}}}=\frac{1}{2}^{+}$. Thus, the identity $\overline{\bar{x}} \approx x$ is not fulfilled in the algebra $\mathcal{A}$.


Diagram 1. Identities - algebras

It can be shown that this algebra verifies all identities externally compatible valid in the class $\mathbf{M V}_{E x}$. It is the case since this class is fulfils assumption of Theorem 2.4. So, the next theorem follows:

Theorem 2.7. The class $\mathbf{M} V_{E x}$ equals the class all dispersions of all MV-algebras.

We have of course also a more general theorem:
Theorem 2.8 (Characterisation of the class $\mathbf{M V} \mathbf{V}_{E x}$ ). For any partition $P$ the class $\mathbf{M V}_{P}$ equals the class of all dispersions of all $P$-dispersions of algebras from the class MV.

## 3. Subdirectly irreducible algebras from the variety of $\mathrm{MV}_{n}$-algebras

In the present section we describe all subdirectly irreducible algebras from the class of $\mathrm{MV}_{n}$-algebras.

### 3.1. Variety of $\mathrm{MV}_{\boldsymbol{n}}$-algebras

In [5] R. Grigolia indicated algebras being semantical counterparts of $n$-valued logics for any $2<n<\aleph_{0}$. The class $\mathbf{M V}_{n}$ of all $\mathrm{MV}_{n}$-algebras is a subclass of the class of all MV-algebras. It is determined by the set of all identities valid in the class of all MV-algebras extended by the following identities:

Ax.12. $(n-1) x+x \approx(n-1) x$
Ax.12'. $x^{n-1} \cdot x \approx x^{n-1}$
and for $n>3$, additionally the following axioms are added:

Ax.13. $\left((j x) \cdot\left(\bar{x}+((j-1) \cdot x)^{-}\right)\right)^{(n-1)} \approx 0$
Ax.13. $(n-1)\left(x^{j}+\left(\bar{x} \cdot\left(x^{j-1}\right)^{-}\right)\right) \approx 1$,
where $1<j<n-1$ and $n-1$ is divided by $j$.
We obtain $\mathbf{M V}_{n}$ - a class of $\mathrm{MV}_{n}$-algebras. Thus, each Boolean algebra is a $\mathrm{MV}_{n}$-algebra for every $2<n<\aleph_{0}$ and each $\mathrm{MV}_{n}$-algebra for every $2<n<\aleph_{0}$ is a MV-algebra.

Let $\mathcal{L}_{n}=\left\langle L_{n},+, \cdot,-, 1,0\right\rangle$, where $L_{n}=\left\{0, \frac{1}{n-1}, \ldots, \frac{n-2}{n-1}, 1\right\}$ and for any $x, y \in L_{n}$ :

- $x+y=\min (1, x+y)$,
- $x \cdot y=\max (0, x+y-1)$,
- $\bar{x}=1-x$.

Let us recall:
Theorem 3.1 ([5]). Each MV $_{n}$-algebra $\mathcal{A}$ is isomorphic to a subdirect product of algebras $\mathcal{L}_{m}$, where $m \leqslant n$ and $m-1$ divides $n-1$.

Let an algebra $\mathcal{A}$ belong to the class $\mathbf{M V}_{n E x}$. It is known that $\mathcal{A}$ is a dispersion of a ceratin algebras $\mathcal{I}$ from the variety $\mathbf{M V}_{n}$.

The following cases can occur (cf [14]):

1. If $\left|A_{i}\right|=1$ for every $i \in I$, then $\mathcal{A}$ belongs to the variety $\mathbf{M V}_{n}$, since each function $c_{f}$ determines an isomorphism of algebras $\mathcal{I}$ and $\mathcal{A}$. Thus, $\mathcal{A}$ is subdirectly-irreducible iff it fulfils the condition of Theorem 3.1 concerning subdirectly-irreducible $\mathrm{MV}_{n}$-algebras.
2. If $|I|=1$ (i.e., $\mathcal{A}$ is a trivial algebra), then $\mathcal{A}$ belongs to the class determined by the externally compatible identities in the type $\langle 2$, $2,1,0,0\rangle$. One can easily prove that in this case the algebra $\mathcal{A}$ is subdirectly irreducible iff it is a 2 -element algebra defined be all externally compatible identities in the type $\langle 2,2,1,0,0\rangle$.

3. Let $|I|>1$ and there is $i \in I$, such that $\left|A_{i}\right|>1$ (see the above figure). For any such $i$ we define a relation $R_{i} \mathrm{w} \mathcal{A}$ stipulating for $a, b \in A$ as follows:

$$
a R_{i} b \text { iff } a=b \text { or } a, b \in A_{i} .
$$

The relation $R_{i}$ is a congruence that differs from $\Delta$. Now, for any $i, j \in I$, such that $i \neq j$ and $\left|A_{i}\right| \neq 1 \neq\left|A_{j}\right|, \mathcal{A}$ is subdirectly irreducible. It is so since $R_{i} \cap R_{j}=\Delta$.

4. The is exactly one element $i \in I$, such that the cardinality of the set $A_{i}$ bigger than 1. Without the loss of generality we can assume that is bigger than 2 (see the above diagram). Then, for every $a \in A_{i_{0}}$ one can define a congruence relation $R(a)$ stipulating for any $x, y$ :

$$
x R(a) y \text { iff } x=y \text { or } x, y \in A \backslash\{a\} .
$$

Each of relations $R(a)$ is a congruence relation different from $\Delta$ and

$$
\bigcap_{a \in A_{i_{0}}} R(a)=\Delta .
$$

Thus $\mathcal{A}$ is subdirectly irreducible (see Diagram 2).
5. The is exactly one element $i \in I$, for which $A_{i}=\left\{0_{1}, 0_{2}\right\}$, where $0_{1}$ is different from $0_{2}$ and is a function $c_{f}$ that is defined as follows (again see the above picture):

$$
C_{+}\left(i_{0}\right)=C .\left(i_{0}\right)=C_{-}\left(i_{0}\right)=O_{2} .
$$

In this case we consider a congruence $R^{\prime \prime}$ defined in the following way:

$$
a R^{\prime \prime} b \text { iff } a=b \text { or } a, b \in A \backslash\left\{O_{1}\right\} .
$$



Diagram 2. Identities - algebras

One can easily check that:

$$
R_{i_{0}} \cap R^{\prime \prime}=\Delta
$$

Thus, $\mathcal{A}$ is subdirectly irreducible.
Obviously, among dispersions only these described below can be subdirectly irreducible algebras: there is exactly one element $i_{0} \in I$, taki że $\left|A_{i_{0}}\right|=2$, say $A_{i_{0}}=\left\{O_{1}, O_{2}\right\}$ and there is a partition $\left\{F_{1}, F_{2}\right\}$ of the set $\{+, \cdot,-\}$ with blocks $F_{1}, F_{2} \neq \emptyset$ such that $c_{f}\left(i_{0}\right)=O_{k}$ for $f \in F_{k}$ where $k=1,2$.

It appears that the above mentioned dispersions are indeed subdirectly irreducible.

Thus, we have the following, main result of this part:
Theorem 3.2. Let $\mathcal{A}$ be an algebra from the class $\mathbf{M V}_{n_{E x}}$. The algebra $\mathcal{A}$ is subdirectly irreducible iff at least one of the following three conditions holds:

1. $\mathcal{A}$ belongs to the variety of $\mathrm{MV}_{n}$-algebras and is subdirectly irreducible,
2. $\mathcal{A}$ is a 2-element algebra from the class defined by all externally compatible identities in the type $\langle 2,2,1,0,0\rangle$,
3. $\mathcal{A}$ is a dispersion of an algebra $\mathcal{I}$ from the class of $\mathrm{MV}_{n}$-algebras and there is exactly one element $i_{0} \in I$ such that $\left|A_{i_{0}}\right|=2$, say $A_{i_{0}}=\left\{O_{1}, O_{2}\right\}$, and there is a partition $\left\{F_{1}, F_{2}\right\}$ of the set $\{+, \cdot,-\}$, where $F_{1}, F_{2} \neq \emptyset$ and $c_{f}\left(i_{0}\right)=O_{k}$ for $f \in F_{k}(k=1,2)$.

## 4. The lattice of varieties generated by $\operatorname{Ex}(\mathrm{MV})$

One can see that $E x(\mathbf{M V})$ is a proper subset of the set $\operatorname{Id}(\mathbf{M V})$. We conclude that the variety of MV-algebr is a proper subvariety of the variety $\mathbf{M V}_{E x}$. Obviously, each subvariety of the class MV is also a proper subvariety of the variety $\mathbf{M V}_{E x}$.

Let us stat with an analysis of the variety MV-algebr. For any variety $V$ in the type $\tau$ we put:

$$
P^{(V)}=\left\{K \in \mathcal{L}\left(V_{P}\right): I d(K)=P(K)\right\} .
$$

We use the following notation (see [4]):

$$
P^{(\mathbf{M V})}=\left\{K \in \mathcal{L}\left(\mathbf{M O L}_{P}\right): I d(K)=P(\mathbf{M V})\right\}
$$

The set $P^{(\mathrm{MV})}$ with the inclusion as an order is a lattice. One can say referring to the class MV, that it is $F$-normal and considering it in the w type $\langle 2,2,1\rangle$ we see that there are five partitions of the set of symbol of basic operations. Applying theorems 2.8, 2.5, and 2.6 we get:
Theorem 4.1. For any partition $P$ of the set $\{+, \cdot,-\}$ the lattice $P^{(\mathrm{MV})}$ is isomorphic to $\mathcal{L}(\mathbf{M V})$.

In the below diagram we present mutual positions of lattices $P^{(\mathbf{M V})}$ in the lattice $\mathcal{L}\left(\mathbf{M V}_{E x}\right)$.


Subvariety of MV-algebras were examined by R. Grigolia, Y. Komori, A. Di Nola, and A. Lettieri. Lettieri and Di Nola [3] have given an equational basis for all MV-varieties, while Komori determined the lattice od subvarieties of the variety of MV-algebras (see [8]).

Following [3] we define for any natural $i>1$ a set $\delta(i)$ as follows:

$$
\delta(i)=\{n \in \mathbf{Z}: 1 \leqslant n \text { and } n \text { dzieli } i\} .
$$

On the other hand, we any finite, nonempty set $J$ of positive numbers, we put:

$$
\Delta(i, J)=\left\{d \in \delta(i) \backslash \bigcup_{j \in J} \delta(j)\right\}
$$

In the case that $J=\varnothing$, we stipulate:

$$
\Delta(i, J)=\delta(i)
$$

We recall the following result:
Theorem 4.2 ([3]). Let $V$ be a proper subvariety of the variety MV. Then there are finite sets $I$ and $J$ of natural numbers bigger than 1, such that $I \cap J \neq \varnothing$ and for any MV-algebra $\mathfrak{A}$, $\mathfrak{A}$ belongs to $V$ iff $\mathfrak{A}$ fulfils the following identities:

$$
\begin{gather*}
\left((n+1) x^{n}\right)^{2} \approx 2 x^{n+1}, \text { gdzie } n=\max \{I \cup J\} ;  \tag{4.5}\\
\left(p x^{p-1}\right)^{n-1} \approx(n+1) x^{p} \tag{4.6}
\end{gather*}
$$

and for any positive number $p$, such that $1<p<n$ which does not divide any number from $I \cup J$;

$$
\begin{equation*}
(n+1) x^{q} \approx(n+2) x^{q}, \text { for any } q \in \bigcup_{j \in J} \Delta(i, J) . \tag{4.7}
\end{equation*}
$$

Let us recall that the smallest proper subvariety of the variety od MV-algebras is the class of Boolean algebras. This class is characterised be a single identity $x+x \approx x$ (i.e., in this context, to determine the class of Boolean algebras it is enough to consider the identity $x+x \approx x$ and all identities fulfilled in the class MV and the obtained set close under the operator Cn ).

Let us recall:
Theorem 4.3 ([11]). The lattice of all nontrivial subvarieties of the variety $\mathbf{M O L}_{E x}$, that are generated be the sum of the set $E x(\mathbf{M O L})$ and the set of all identities of one variable in the type $\langle 2,2,1\rangle$, is isomorphic to the lattice $(\mathcal{L}(\mathbf{M O L}) \backslash \mathbf{T}) \times \overline{\mathbf{B}}$.

For any class $V$ from the lattice $\mathcal{L}(\mathbf{M V})$ we consider a set $\{K \in$ $\left.\mathcal{L}\left(V_{E x}\right): V \subseteq K \subseteq V_{E x}\right\}$. Of course, this set is a lattice which is denoted by $\bar{V}$.

The following two theorems are true. We skip proofs since they are similar to proofs of theorems 2.2 and 4.3.

Theorem 4.4. For every nontrivial variety $V \in L(\mathbf{M V})$ there is a lattice embedding of the lattice $\overline{\mathbf{B}}$ into $\bar{V}$, where $\mathbf{B}$ is a class of Boolean algebras.

This theorem has been illustrated on Diagram 3


Diagram 3. The lattice of subvarieties of the variety $\mathbf{M V}_{E x}$

Although we do not know the full description of the whole lattice $\mathcal{L}\left(\mathbf{M V}_{E x}\right)$, we do know how the sublattice of this lattice generated by identities of one variable looks like. Strictly speaking the following theorem holds:

Theorem 4.5. The lattice of all subvarieties of the variety $\mathbf{M V}_{E x}$ that are generated by identities of one variable is isomorphic to the lattice $\bar{T} \cup((L(\mathbf{M V}) \backslash T) \times \overline{\mathbf{B}})$.

Having analysed structures of subdirectly irreducible algebras in the class determined be externally compatible identities of $\mathrm{MV}_{n}$-algebras we see that there is quite a lot of them - if I may say so - of specific "types of algebras". It is connected to the fact, that the lattice $\mathcal{L}\left(\mathbf{M V}_{E x}\right)$ is also quite big and - is some sense - rather complicated. A "horizontal" analysis - selecting varieties described by Komori, Di Nola, and Lettieri,
as well as a "vertical" analysis - stressing a correlation with the class of Boolean algebr, can be treated as a partial solution of the problem mentioned at the very beginning of the paper.

Finally, we have the following:
Hypothesis. In the lattice $\mathcal{L}\left(\mathbf{M V}_{E x}\right)$ there is no other elements than those predicted by Theorem 4.5.

## References

[1] Chang, C. C., "Algebraic analysis of many valued logics", Transactions of the American Mathematical Society, 88 (1958): 467-490. DOI:10.1090/ S0002-9947-1958-0094302-9 and DOI:10.2307/1993227
[2] Chang, C.C., "A new proof of the completeness of Łukasiewicz axioms", Transactions of the American Mathematical Society, 93 (1959): 74-80. DOI:10.1090/S0002-9947-1959-0122718-1
[3] Di Nola, A., and A. Lettieri, "Equational characterization of all varieties of MV-zlgebras", Journal of Algebra, 221 (1999): 463-474.
[4] Gajewska-Kurdziel, K., "On the lattice of some varieties defined by P-compatible identities", Zeszyty Naukowe Uniwersytetu Opolskiego, Matematyka, 29 (1995): 45-47.
[5] Grigolia, R., "Algebraic analysis of Łukasiewicz-Tarski's n-valued logical systems", pages 81-92 in Selected Papers on Eukasiewicz Sentential Calcui, R. Wójcicki (ed.), Zakład Narodowy imienia Ossolińskich, Wydawnictwo Polskiej Akademii Nauk: Wrocław, Warszawa, Kraków, Gdańsk, 1977.
[6] Hałkowska, K., "Lattice of equational theories of $P$-compatible varieties", pages 587-595 in Logic at Work. Essays dedicated to the memory of Helena Rasiowa, E. Orłowska (ed.), Springer: Heidelberg, New York, 1998.
[7] Komori, Y., "Super-Eukasiewicz implicational logics", Nagoya Mathematical Journal, 72 (1978): 127-133.
[8] Komori, Y., "Super Łukasiewicz propositional logics", Nagoya Mathematical Journal, 84 (1981): 119-133.
[9] Łukasiewicz, J., "O logice trójwartosciowej", Ruch filozoficzny, 5 (1920): 169-171.
[10] Łukasiewicz, J., and A. Tarski, "Untersuchungen über den Aussagenkalkül", Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, 23 Classe iii (1930): 30-50.
[11] Mruczek-Nasieniewska, K., "The varieties defined by P-compatible identities of modular ortholattices", Studia Logica 95 (2010): 21-35. DOI:10. 1007/s11225-010-9255-5
[12] Mundici, D., "Interpretation of AF CU-algebras in Lukasiewicz sentential calculus", J. Funct. Anal., 65 (1986): 15-63.
[13] Płonka, J., " $P$-compatible identities and their applications to classical algebras", Math. Slovaca, 40, 1 (1990): 21-30.
[14] Płonka, J., "Subdirectly irreducible algebras in varieties defined by externally compatible identities", Studia Scientarium Hungaria, 27 (1992): 267-271.
[15] Rose, A., and J. B. Rosser, "Fragments of many-valued statement calculi", Trans. Amer. Math. Soc., 87 (1958): 1-53. DOI:10.2307/1993083 and DOI:10.1090/S0002-9947-1958-0094299-1
[16] Rosser, J. B., and A. R. Turquette, "Axiom schemes for $m$-valued propositional calculi", The Journal of Symbolic Logic, 10, 3 (1945): 61-82. MR13718, http://projecteuclid.org/euclid.jsl/1183391454
[17] Tarski, A., Logic, Semantic, Metamathematics, Oxford Univ. Press, 1956.
[18] Wajsberg, M., "Aksjomatyzacja trójwartosciowego rachunku zdań", Comptes rendue des seauces de la Societe des Sciences et des Lettres de Varsovie, Classe III, 24 (1931): 259-262.
[19] Wajsberg, M,., "Beiträge zum Metaaussagenkalkül I", Monatshefte für Mathematik und Physik, 42 (1935): 221-242.

Krystyna Mruczek-Nasieniewska<br>Department of Logic<br>Nicolaus Copernicus University in Toruń<br>Toruń, Poland<br>mruczek@uni.torun.pl

