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ABSTRACT. We solve a long standing open problem concerning the structure of finite

cycles in the category mod A of finitely generated modules over an arbitrary artin

algebra A, that is, the chains of homomorphisms M L My — - = M,_4 f—>

M, = M, between indecomposable modules in mod A which do not belong to the
infinite radical of mod A. In particular, we describe completely the structure of an
arbitrary module category mod A whose all cycles are finite. The main structural
results of the paper allow to derive several interesting combinatorial and homological
properties of indecomposable modules lying on finite cycles. For example, we prove
that for all but finitely many isomorphism classes of indecomposable modules M
lying on finite cycles of a module category mod A the Euler characteristic of M is
well defined and nonnegative. Moreover, new types of examples illustrating the main
results of the paper are presented.

0. INTRODUCTION

Throughout the paper, by an algebra is meant an artin algebra over a fixed com-
mutative artin ring K, which we shall assume (without loss of generality) to be basic
and indecomposable. For an algebra A, we denote by mod A the category of finitely
generated right A-modules and by ind A the full subcategory of mod A formed by the
indecomposable modules. The Jacobson radical rads of mod A is the ideal generated
by all nonisomorphisms between modules in ind A, and the infinite radical rad of
mod A is the intersection of all powers radiA, 1 > 1, of rady. By a result of Auslander
6], rad}y = 0 if and only if A is of finite representation type, that is, ind A admits only
a finite number of pairwise nonisomorphic modules (see also [32] for an alternative
proof of this result). On the other hand, if A is of infinite representation type then
(rad¥’)? # 0, by a result proved in [19].

An important combinatorial and homological invariant of the module category mod A
of an algebra A is its Auslander-Reiten quiver I'4. Recall that I'4 is a valued translation
quiver whose vertices are the isomorphism classes {X} of modules X in ind A, the
arrows correspond to irreducible homomorphisms between modules in ind A, and the
translation is the Auslander-Reiten translation 74 = DTr. We shall not distinguish
between a module in X in ind A and the corresponding vertex {X} of I'y. If A is an
algebra of finite representation type, then every nonzero nonisomorphism in ind A is a
finite sum of composition of irreducible homomorphisms between modules in ind A, and
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hence we may recover mod A from the translation quiver I'4. In general, I' 4 describes
only the quotient category mod A/rad’y.

Let A be an algebra and M a module in ind A. An important information concerning
the structure of M is coded in the structure and properties of its support algebra
Supp(M) defined as follows. Consider a decomposition A = Py, & Qs of A in mod A
such that the simple summands of the semisimple module P);/radP); are exactly the
simple composition factors of M. Then Supp(M) = A/t4(M), where t 4(M) is the ideal
in A generated by the images of all homomorphisms from @, to A in mod A. We note
that M is an indecomposable module over Supp(M). Clearly, we may realistically hope
to describe the structure of Supp(M) only for modules M having some distinguished
properties.

A prominent role in the representation theory of algebras is played by cycles of
indecomposable modules (see [42], [47], [60], [69]). Recall that a cycle in ind A is a
sequence

My L% My = - = M, 5 M, = M,
of nonzero nonisomorphisms in ind A [60], and such a cycle is said to be finite if
the homomorphisms fi,..., f, do not belong to rady (see [3], [4]). Following Ringel
[60], a module M in ind A which does not lie on a cycle in ind A is called direct-
ing. The following two important results on directing modules were established by
Ringel in [60]. Firstly, if A is an algebra with all modules in ind A being directing,
then A is of finite representation type. Secondly, the support algebra Supp(M) of
a directing module M over an algebra A is a tilted algebra Endg(7"), for a heredi-
tary algebra H and a tilting module 7" in mod H, and M is isomorphic to the im-
age Hompy (T, I) of an indecomposable injective module I in mod H via the functor
Homp (7, —) : mod H — mod Endg (7). In particular, it follows that, if A is an alge-
bra of infinite representation type, then ind A always contains a cycle. Moreover, it
has been proved independently by Peng and Xiao [49] and Skowroniski [67] that the
Auslander-Reiten quiver I'4 of an algebra A admits at most finitely many 74-orbits
containing directing modules. Hence, in order to obtain information on the support
algebras Supp(M) of nondirecting modules in ind A, it is natural to study properties
of cycles in ind A containing M. A module M in ind A is said to be cycle-finite if M
is nondirecting and every cycle in ind A passing through M is finite. Obviously, every
indecomposable module over an algebra of finite representation type is cycle-finite. Ex-
amples of cycle-finite indecomposable modules over algebras of infinite representation
type are provided by all indecomposable modules in the stable tubes of tame heredi-
tary algebras [24], canonical algebras [60], [61], or more generally concealed canonical
algebras [35]. Following Assem and Skowronski [3], [4], an algebra A is said to be
cycle-finite if all cycles in ind A are finite. The class of cycle-finite algebras is wide and
contains the following distinguished classes of algebras: the algebras of finite represen-
tation type, the tame tilted algebras [27], [31], [60], the tame double tilted algebras
[57], the tame generalized double tilted algebras [58], the tubular algebras [60], [61],
the iterated tubular algebras [55], the tame quasi-tilted algebras [36], [73], the tame
generalized multicoil algebras [45], the algebras with cycle-finite derived categories
[3], and the strongly simply connected algebras of polynomial growth [71]. We also
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mention that a selfinjective algebra A is cycle-finite if and only if A is of finite rep-
resentation type [30]. On the other hand, frequently an algebra A admits a Galois
covering R — R/G = A, where R is a cycle-finite locally bounded category and G is
an admissible group of automorphisms of R, which allows to reduce the representation
theory of A to the representation theory of cycle-finite algebras being finite convex
subcategories of R (see [53] and [72] for some general results). For example, every
finite dimensional selfinjective algebra A of polynomial growth over an algebraically
closed field K admits a canonical standard form A (geometric socle deformation of A)
such that A has a Galois covering R — R/G = A, where R is a cycle-finite selfinjective
locally bounded category and G is an admissible infinite cyclic group of automorphisms
of R, the Auslander-Reiten quiver I'; of A is the orbit quiver I'r/G of I'p, and the
stable Auslander-Reiten quivers of A and A are isomorphic (see [64], [77]). We refer
to [12], [42], [70] for some general results on the structure of cycle-finite algebras and
their module categories.

In the paper we are concerned with the problem of describing the support algebras
of cycle-finite modules over arbitrary (artin) algebras. We note that this may be
considered as a natural extension of the problem concerning the structure of support
algebras of directing modules, solved by Ringel in [60]. Namely, the directing modules
in ind A may be viewed as modules M in ind A for which every oriented cycle of
nonzero homomorphisms in ind A containing M consists entirely of isomorphisms. The
considered problem, initiated more than 25 years ago in [3], turned out to be very
difficult, and many researchers involved to its solution resigned. The main obstacle for
solution of this problem was the large complexity of finite cycles of indecomposable
modules and the fact that all cycles of indecomposable modules over algebras of finite
representation type are finite. The main results of the paper show that new classes of
algebras and complete understanding of the structure of their module categories were
necessary for the solution of the considered problem. We will outline now our approach
towards solution of the problem.

Let A be an algebra and M be a cycle-finite module in ind A. Then every cycle in
ind A passing through M has a refinement to a cycle of irreducible homomorphisms in
ind A containing M and consequently M lies on an oriented cycle in the Auslander-
Reiten quiver I'y of A. Following Malicki and Skowronski [44], we denote by .I'a
the cyclic quiver of A obtained from I'4 by removing all acyclic vertices (vertices not
lying on oriented cycles in I'4) and the arrows attached to them. Then the connected
components of the translation quiver .['4 are said to be cyclic components of I'4. It
has been proved in [44] that two modules X and Y in ind A belong to the same cyclic
component of I'y if and only if there is an oriented cycle in I'4 passing through X
and Y. For a cyclic component I' of .I'4, we consider a decomposition A = Pr & Qr
of A in mod A such that the simple summands of the semisimple module Pr/radPr
are exactly the simple composition factors of indecomposable modules in I', the ideal
t4(T) in A generated by the images of all homomorphisms from @Qr to A in mod A,
and call the quotient algebra Supp(I") = A/ts(I") the support algebra of I'. Observe
now that M belongs to a unique cyclic component I'(M) of I'4 consisting entirely
of cycle-finite indecomposable modules, and the support algebra Supp(M) of M is a
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quotient algebra of the support algebra Supp(I'(M)) of I'(M). A cyclic component T’
of ' containing a cycle-finite module is said to be a cycle-finite cyclic component of
['4. We will prove that the support algebra Supp(I") of a cycle-finite cyclic component
[' of ' 4 is isomorphic to an algebra of the form er Aer for an idempotent er of A whose
primitive summands correspond to the vertices of a convex subquiver of the valued
quiver @4 of A. On the other hand, the support algebra Supp(M) of a cycle-finite
module M in ind A is not necessarily an algebra of the form eAe for an idempotent e
of A (see Section 6).

The main results of the paper provide a conceptual description of the support al-
gebras of cycle-finite cyclic components of I'4. The description splits into two cases.
In the case when a cycle-finite cyclic component I' of I'4 is infinite, we prove that
Supp(I') is a suitable gluing of finitely many generalized multicoil algebras (introduced
by Malicki and Skowronski in [45]) and algebras of finite representation type, and I is
the corresponding gluing of the associated cyclic generalized multicoils via finite trans-
lation quivers. In the second case when a cycle-finite cyclic component I' is finite, we
prove that Supp(I') is a generalized double tilted algebra (in the sense of Reiten and
Skowroniski [58]) and I is the core of the connecting component of this algebra.

We would like to mention that the generalized multicoil algebras form a prominent
class of algebras of global dimension at most 3, containing the class of quasitilted alge-
bras of canonical type, and are obtained by sophisticated gluings of concealed canonical
algebras using admissible algebra operations, generalizing the coil operations proposed
by Assem and Skowronski in [4]. The generalized double tilted algebras form a dis-
tinguished class of algebras, containing all tilted algebras and all algebras of finite
representation type, and can be viewed as two-sided gluings of tilted algebras. The
tilted algebras and quasitilted algebras of canonical type were under intensive inves-
tigation over the last two decades by many representation theory algebraists. Hence,
the main results of the paper give a good understanding of the support algebras of
cycle-finite cyclic components. On the other hand, the results and examples presented
in the paper create new interesting open problems and research directions (see Section
1).

The paper is organized as follows. In Section 1 we present the main results of the
paper and related background. In Section 2 we describe properties of cyclic components
of the Auslander-Reiten quivers of algebras, applied in the proofs of the main theorems.
Sections 3 and 4 are devoted to the proofs of Theorems 1.1 and 1.2, respectively. In
Sections 5 and 6 we present new types of examples, illustrating the main results of the
paper.

For basic background on the representation theory applied here we refer to [2], [9],
[60], [62], [63], [79].

The main results of the paper have been proved during the visit of P. Malicki and A.
Skowronski at the Centro de Investigacién en Mathematicas (CIMAT) in Guanajuato
(November 2012), who would like to thank J. A. de la Pena and CIMAT for the warm
hospitality and wonderful conditions for the successful realization of this joint research
project. The results were presented by the first named author during the conferences
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” Advances in Representation Theory of Algebras” (Guanajuato, December 2012) and
”Perspectives of Representation Theory of Algebras” (Nagoya, November 2013).

1. MAIN RESULTS AND RELATED BACKGROUND

In order to formulate the main results of the paper we need special types of compo-
nents of the Auslander-Reiten quivers of algebras and distinguished classes of algebras
with separating families of Auslander-Reiten components.

Let A be an algebra. For a subquiver I' of I' 4, we denote by anny4(I') the intersection
of the annihilators anns(X) = {a € A | Xa = 0} of all indecomposable modules X
in I, and call the quotient algebra B(I') = A/anna (") the faithful algebra of T'. By
a component of I'y we mean a connected component of the translation quiver I'4.
A component C of 'y is called regular if C contains neither a projective module nor
an injective module, and semireqular if C does not contain both a projective and an
injective module. It has been shown in [37] and [82] that a regular component C of T'4
contains an oriented cycle if and only if C is a stable tube (is of the form ZA/(7"), for
a positive integer r). Moreover, Liu proved in [38] that a semiregular component C of
"4 contains an oriented cycle if and only if C is a ray tube (obtained from a stable tube
by a finite number (possibly zero) of ray insertions) or a coray tube (obtained from a
stable tube by a finite number (possibly zero) of coray insertions). A component C of
' 4 is said to be coherent [44] (see also [23]) if the following two conditions are satisfied:

(C1) For each projective module P in C there is an infinite sectional path

P:X1—>X2—>"'—>X7;%Xi+1—>Xi+2—>"'.
(C2) For each injective module I in C there is an infinite sectional path
=Y =Y =Y, 2 Yo Y =1

Further, a component C of I'4 is said to be almost cyclic if its cyclic part .C is a cofinite
subquiver of C. We note that the stable tubes, ray tubes and coray tubes of ' are
special types of almost cyclic coherent components. In general, it has been proved by
Malicki and Skowroniski in [44] that a component C of I'4 is almost cyclic and coherent
if and only if C is a generalized multicoil, obtained from a finite family of stable tubes
by a sequence of admissible operations (ad 1)-(ad 5) and their duals (ad 1*)-(ad 5*).
On the other hand, a component C of ['4 is said to be almost acyclic if all but finitely
many modules of C are acyclic. It has been proved by Reiten and Skowronski in [58]
that a component C of I'4 is almost acyclic if and only if C admits a multisection
A. Moreover, for an almost acyclic component C of I'4, there exists a finite convex
subquiver ¢(C) of C (possibly empty), called the core of C, containing all modules lying
on oriented cycles in C (see [58] for details). A family C = (C;);csr of components of
I'4 is said to be generalized standard if rad%’ (X,Y) = 0 for all modules X and Y in C
[66], and sincere if every simple module in mod A occurs as a composition factor of a
module in C. Finally, following Assem, Skowronski and Tomé [5], a family C = (C;)ier
of components of I"4 is said to be separating if the components in I'4 split into three
disjoint families P4, C4 = C and Q* such that:

(S1) C# is a sincere generalized standard family of components;

(S2) HOTHA(QA,PA) =0, HomA(QA,CA) =0, HomA(CA’fPA) —0;
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(S3) any morphism from P4 to Q* in mod A factors through the additive category
add(C?) of C4.
We then say that C* separates P4 from Q4 and write

[h=Puctuot

We mention that then the families P4 and Q4 are uniquely determined by the separat-
ing family C4, and C# is a faithful family of components in T'4, that is, ann4(C*) = 0.

In the representation theory of algebras an important role is played by the canon-
ical algebras introduced by Ringel in [60] and [61]. Every canonical algebra A is of
global dimension at most 2 and its Auslander-Reiten quiver I'y admits a canonical
separating family 7 of stable tubes, so I'y admits a disjoint union decomposition
[y =PAUTAUQA. Then an algebra C of the form End, (T), with T a tilting module
in the additive category add(P*) of P is called a concealed canonical algebra of type
A, and T = Homy (7T, T?) is a separating family of stable tubes in I'c, so we have
a disjoint union decomposition I'c = P¢ U T U QY. It has been proved by Lenzing
and de la Pena in [35] that an algebra A is a concealed canonical algebra if and only
if 'y admits a separating family 74 of stable tubes. The concealed canonical algebras
form a distinguished class of quasitilted algebras, which are the endomorphism algebras
End_»(T) of tilting objects T  in abelian hereditary K-categories s [26]. By a result
due to Happel, Reiten and Smalg proved in [26], an algebra A is a quasitilted algebra if
and only if gl. dim A < 2 and every module X in ind A satisfies pd 4, X < 1oridsX < 1.
Further, it has been proved by Happel and Reiten in [25] that the class of quasitilted
algebras consists of the tilted algebras (the endomorphism algebras Endy(T) of tilt-
ing modules T over hereditary algebras H) and the quasitilted algebras of canonical
type (the endomorphism algebras End (7)) of tilting objects T in abelian hereditary
categories /% whose derived category D°(#) is equivalent to the derived category
DP(mod A) of the module category mod A of a canonical algebra A). Moreover, it has
been proved by Lenzing and Skowroniski in [36] (see also [73]) that an algebra A is
a quasitilted algebra of canonical type if and only if I'4 admits a separating family
T4 of semiregular tubes (ray and coray tubes), and if and only if A is a semiregular
branch enlargement of a concealed canonical algebra C'. We are now in position to
introduce the class of generalized multicoil algebras [45], being sophisticated gluings of
quasitilted algebras of canonical type, playing the fundamental role in first main result
of the paper. It has been proved by Malicki and Skowronski in [45] that the Auslander-
Reiten quiver I'4 of an algebra A admits a separating family of almost cyclic coherent
components if and only if A is a generalized multicoil algebra, that is, a generalized
multicoil enlargement of a product C' = C} x ... x C,, of concealed canonical algebras
Ci,...,C,, using modules from the separating families 7¢1,..., 7% of stable tubes
of I'ey,...,T'¢,, and a sequence of admissible operations of types (ad 1)-(ad 5) and
their duals (ad 1*)-(ad 5*). For a generalized multicoil algebra A, there is a unique
quotient algebra A of A which is a product of quasitilted algebras of canonical type
having separating families of coray tubes (the left quasitilted algebra of A) and a unique
quotient algebra A" of A which is a product of quasitilted algebras of canonical type
having separating families of ray tubes (the right quasitilted algebra of A) such that I"4
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has a disjoint union decomposition (see [45, Theorems C and EJ)
I'y=P4uctuQ,
where

e P4 is the left part PAY in a decomposition I" ;o) = PAY U TAY U 0AY of the
Auslander-Reiten quiver I' ;o) of the left quasitilted algebra A® of A, with TAY
a family of coray tubes separating PAY from QA(Z);

e O4is the right part 04" in a decomposition I A = PAY UTAY U 0A™ of the
Auslander-Reiten quiver I' 4y of the right quasitilted algebra A" of A, with
TAY 4 family of ray tubes separating PA" from 04";

e C* is a family of generalized multicoils separating P4 from Q4 obtained
from stable tubes in the separating families 7, ..., T of stable tubes of
the Auslander-Reiten quivers I'¢, ..., ¢, of the concealed canonical algebras
Ci,...,C, by a sequence of admissible operations of types (ad 1)-(ad 5) and
their duals (ad 1*)-(ad 5*), corresponding to the admissible operations leading
from C=C; x ... x C,, to A;

e C4 consists of cycle-finite modules and contains all indecomposable modules of
T4 and 74,

e P4 contains all indecomposable modules of PA(T);

e Q4 contains all indecomposable modules of QA“).

Moreover, in the above notation, we have
gl.dim A < 3;
pd X <1 for any indecomposable module X in P4;

id4Y < 1 for any indecomposable module Y in Q%;
pd, M < 2 and idyM < 2 for any indecomposable module M in C4.
A generalized multicoil algebra A is said to be tame if AV and A" are products of
tilted algebras of Euclidean types or tubular algebras. We also note that every tame
generalized multicoil algebra is a cycle-finite algebra.

The following theorem is the first main result of the paper.

Theorem 1.1. Let A be an algebra and I" be a cycle-finite infinite component of I 4.
Then there exist infinite full translation subquivers I'y, ..., T, of I' such that the follow-
g statements hold.

(i) For eachi € {1,...,r}, I'; is a cyclic coherent full translation subquiver of T 4.
(ii) Foreachi € {1,...,r}, Supp(I';) = B(I;) and is a generalized multicoil algebra.
(iii) Iy, ..., Ty are pairwise disjoint full translation subquivers of I' and I'“ =T'; U

... UT. is @ maximal cyclic coherent and cofinite full translation subquiver of
r.

(iv) B(I'\ ') is of finite representation type.

(v) Supp(T) = B(D),

It follows from the above theorem that all but finitely many modules lying in an
infinite cycle-finite component I' of .['y can be obtained from indecomposable mod-
ules in stable tubes of concealed canonical algebras by a finite sequence of admissible
operations of types (ad 1)-(ad 5) and their duals (ad 1*)-(ad 5*) (see [45, Section 3]
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for details). We refer also to [33] and [68] for some results on the composition factors
of indecomposable modules lying in stable tubes of the Auslander-Reiten quivers of
concealed canonical algebras, and to [48] for the structure of indecomposable modules
lying in coils. We would like to stress that the cycle-finiteness assumption imposed
on the infinite component I' of .I'4 is essential for the validity of the above theorem.
Namely, it has been proved in [74], [76] that, for an arbitrary finite dimensional algebra
B over a field K, a module M in mod B, and a positive integer r, there exists a finite
dimensional algebra A over K such that B is a quotient algebra of A, I'4 admits a
faithful generalized standard stable tube T of rank r, T is not cycle-finite, and M is
a subfactor of all but finitely many indecomposable modules in 7. This shows that
in general the problem of describing the support algebras of infinite cyclic components
(even stable tubes) of Auslander-Reiten quivers is difficult.

In order to present the second main result of the paper, we need the class of gener-
alized double tilted algebras introduced by Reiten and Skowroniski in [58] (see also [1],
[18] and [57]). A generalized double tilted algebra is an algebra B for which I'p admits
a separating almost acyclic component C.

For a generalized double tilted algebra B, the Auslander-Reiten quiver I'g has a
disjoint union decomposition (see [58, Section 3))

I's =PPucPuQ?b,
where

e CB is an almost acyclic component separating P? from QF, called a connecting
component of I'g;

e There exist hereditary algebras H 1(1), cee Hﬁ? and tilting modules T(l) € mod H 1(1), e
TV € mod HYY such that the tilted algebras B() = EndH(z)(T ), o ,BT(,ZL) =

End HO (T )) are quotient algebras of B and P* is the disjoint union of all com-
U

@(T,Sp) of mod Bil), ..., mod BY determmed by Tl T
e There exist hereditary algebras H1 ), o ,Hn and tﬂtmg modules T(r) € mod Hl(r)7 L

7" € mod HY” such that the tilted algebras B." = End,;) (T¢ )), ...,BY) =

End ;o (Tn )) are quotient algebras of B and QP is the disjoint union of all com-

ponents of I' contained entirely in the torsion-free parts % ( h ), ce

BWr

ponents of I' ., Iy contained entirely in the torsion parts 2~ (Tl(T)), ce

B
,%”(TT(LT)) of mod BY), ..., mod BY determined by Tl(T), T,

e every indecomposable module in C? not lying in the core ¢(CP) of C? is an

indecomposable module over one of the tilted algebras Bg), cee B(l) BY), cee

B\;

every nondirecting indecomposable module in C? is cycle-finite and lies in ¢(C?);

pdpX < 1 for all indecomposable modules X in P?;

idgY < 1 for all indecomposable modules Y in QF;

for all but finitely many indecomposable modules M in C?, we have pdgM < 1

oridgM < 1.
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Then BO = BY x ... x BYY is called the left tilted algebra of B and BT = B x ... x
B is called the right tilted algebra of B. We note that the class of algebras of finite
representation type coincides with the class of generalized double tilted algebras B with
I's being the connecting component C? (equivalently, with the tilted algebras B! and
B being of finite representation type (possibly empty)). Finally, a generalized double
tilted algebra is said to be tame if the tilted algebras B and B(") are generically tame
in the sense of Crawley-Boevey [21], [22]. We note that every tame generalized double
tilted algebra is a cycle-finite algebra. We would like to mention that there exist
generalized double tilted algebras of infinite representation type of arbitrary global
dimension d € NU {oo}. We refer also to [28], [39], [65] for useful characterizations of
tilted algebras.
The following theorem is the second main result of the paper.

Theorem 1.2. Let A be an algebra and I' be a cycle-finite finite component of .I'4.
Then the following statements hold.

(i) Supp(I") is a generalized double tilted algebra.
(ii) T is the core c(CPW)) of a unique almost acyclic connecting component CB™) of
FB(F)-
(iii) Supp(I') = B(I).

We would like to point that every finite cyclic component I' of an Auslander-Reiten
quiver I'4 contains both a projective module and an injective module (see Corollary
2.6), and hence I'y admits at most finitely many finite cyclic components. We refer
also to [34], [80], [81] for some results concerning double tilted algebras with connecting
components containing nondirecting indecomposable modules.

An idempotent e of an algebra A is said to be convezr provided e is a sum of pairwise
orthogonal primitive idempotents of A corresponding to the vertices of a convex valued
subquiver of the quiver Q4 of A (see Section 2 for definition). The following direct
consequence of Theorems 1.1, 1.2 and Propositions 2.2, 2.3 provides a handy description
of the faithful algebra of a cycle-finite component of .I" 4.

Corollary 1.3. Let A be an algebra and I" be a cycle-finite component of .I's. Then
there ezists a convex idempotent er of A such that Supp(I") is isomorphic to the algebra
€FA€F.

The third main result of the paper is a consequence of Theorems 1.1 and 1.2, and
the results established in [46, Theorem 1.3].

Theorem 1.4. Let A be an algebra. Then, for all but finitely many isomorphism
classes of cycle-finite modules M in ind A, the following statements hold.
(i) |Exty (M, M)| < |Enda(M)| and Ext’y(M, M) =0 for r > 2.
(ii) |Extly (M, M)| = |Enda(M)| if and only if there is a quotient concealed canonical
algebra C of A and a stable tube T of I'c such that M is an indecomposable
C-module in T of quasi-length divisible by the rank of T .

Here, |V| denotes the length of a module V' in mod K. In particular, the above
theorem shows that, for all but finitely many isomorphism classes of cycle-finite modules
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M in a module category ind A, the Euler characteristic

Xa(M) = (=1)[Ext}y (M, M)
i=0
of M is well defined and nonnegative. We would like to mention that there are cycle-
finite algebras A with indecomposable modules M lying in infinite cyclic components
of 'y and the Euler characteristic x 4(M) being an arbitrary given positive integer (see
[52]).

Let A be an algebra and Ky(A) the Grothendieck group of A. For a module M in
mod A, we denote by [M] the image of M in Ky(A). Then Ky(A) is a free abelian
group with a Z-basis given by [S1], ..., [S,] for a complete family Si, ..., S, of pairwise
nonisomorphic simple modules in mod A. Thus, for modules M and N in mod A, we
have [M] = [N] if and only if the modules M and N have the same composition factors
including the multiplicities. In particular, it would be interesting to find sufficient
conditions for a module M in ind A to be uniquely determined (up to isomorphism) by
its composition factors (see [59] for a general result in this direction).

The next theorem provides information on the composition factors of cycle-finite
modules, and is a direct consequence of Theorems 1.1, 1.2, 1.4 and the results estab-
lished in [41, Theorems A and B].

Theorem 1.5. Let A be an algebra. The following statements hold.

(i) There is a positive integer m such that, for any cycle-finite module M in ind A
with |End4(M)| # |Ext! (M, M)|, the number of isomorphism classes of mod-
ules X in ind A with [X] = [M] is bounded by m.

(ii) For all but finitely many isomorphism classes of cycle-finite modules M in ind A
with |[Endo(M)| = |Ext!y(M, M)|, there are infinitely many pairwise nonisomor-
phic modules X in ind A with [X] = [M].

Following Auslander and Reiten [7], one associates with each nonprojective module
X in a module category ind A the number «(X) of indecomposable direct summands
in the middle term

0>y X —->Y —>X—0

of the almost split sequence with the right term X. It has been proved by Bautista and
Brenner [10] that, if A is an algebra of finite representation type and X a nonprojective
module in ind A, then a(X) < 4, and if o(X) = 4 then Y admits a projective-injective
indecomposable direct summand P, and hence X = P/soc(P). In [40] Liu proved that
the same is true for any indecomposable nonprojective module X lying on an oriented
cycle of the Auslander-Reiten quiver I'4 of any algebra A, and consequently for any
nonprojective cycle-finite module in ind A.

The following theorem is a direct consequence of Theorems 1.1 and 1.2, and [44,
Corollary B], and provides more information on almost split sequences of cycle-finite
modules.

Theorem 1.6. Let A be an algebra. Then, for all but finitely many isomorphism
classes of nonprojective cycle-finite modules M in ind A, we have a(M) < 2.
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In connection to Theorem 1.6, we would like to mention that, for a cycle-finite algebra
A and a nonprojective module M in ind A, we have a(M) < 5, and if (M) =5 then
the middle term of the almost split sequence in mod A with the right term M admits
a projective-injective indecomposable direct summand P, and hence M = P/soc(P)
(see [13, Conjecture 1], [43] and [54]).

The next theorem describe the structure of the module category ind A of an arbitrary
cycle-finite algebra A, and is a direct consequence of Theorems 1.1 and 1.2 as well as
[42, Theorem 2.2] and its dual.

Theorem 1.7. Let A be a cycle-finite algebra. Then there exist tame generalized
multicoil algebras By, ..., B, and tame generalized double tilted algebras Byi1, ..., B,
which are quotient algebras of A and the following statements hold.
(i) ind A = J!_,ind B;.
(ii) All but finitely many isomorphism classes of modules in ind A belong to | J;_, ind B;.
(iii) All but finitely many isomorphism classes of nondirecting modules in ind A be-

long to generalized multicoils of I'p,,...,I'p,.

'
%

The next theorem extends the homological characterization of strongly simply con-
nected algebras of polynomial growth established in [51] to arbitrary cycle-finite al-
gebras, and is a direct consequence of Theorem 1.4 and the properties of directing
modules described in [60, 2.4(8)].

Theorem 1.8. Let A be a cycle-finite algebra. Then, for all but finitely many iso-
morphism classes of modules M in ind A, we have |Ext!y(M, M)| < |Ends(M)| and
Ext’y (M, M) =0 forr > 2.

We end this section with some questions related to the results described above.

In [37], [38] Liu introduced the notions of left and right degrees of irreducible homo-
morphisms of modules and showed their importance for describing the shapes of the
components of the Auslander-Reiten quivers of algebras. In particular, Liu pointed out
in [37] that every cycle of irreducible homomorphisms between indecomposable mod-
ules in a module category mod A contains an irreducible homomorphism of finite left
degree and an irreducible homomorphism of finite right degree. It would be interesting
to describe the degrees of irreducible homomorphisms occurring in cycles of cycle-finite
modules (see [14], [15], [16], [17] for some results in this direction).

In [50] de la Pena proved that the support algebra of a directing module over a tame
algebra over an algebraically closed field is a tilted algebra being a gluing of at most
two representation-infinite tilted algebras of Euclidean type. It would be interesting to
know if the support algebra Supp(I') of a cycle-finite finite component I' in the cyclic
quiver .I'4 of a cycle-finite algebra is a gluing of at most two representation-infinite
tilted algebras of Euclidean type. In general, it is not clear how many tilted algebras
may occur in the decompositions of the left tilted algebra and the right tilted algebra
of the support algebra Supp(I") of a cycle-finite component I' of the cyclic quiver .I'4
of an algebra A (see Examples 6.1 and 6.2).
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2. CYCLIC COMPONENTS

In this section we recall some concepts and describe some properties of cyclic com-
ponents of the Auslander-Reiten quivers of algebras. Let A be an algebra (basic,
indecomposable) and ey, ..., e, be a set of pairwise orthogonal primitive idempotents
of Awith1y=e;+---+e¢,. Then

o P,=¢;A i€ {l,...,n}, is a complete set of pairwise nonisomorphic indecom-
posable projective modules in mod A;
o [; = D(Ae;), 1 € {1,...,n}, is a complete set of pairwise nonisomorphic inde-
composable injective modules in mod A;
o S, =top(P) = e;Afe;radA, i € {1,...,n}, is a complete set of pairwise non-
isomorphic simple modules in mod A;
e S; =soc(ly), forany i € {1,...,n}.
Moreover, F; = End4(S;) = e;Ae;/e;(radA)e;, for i € {1,...,n}, are division algebras.
The quiver Q4 of A is the valued quiver defined as follows:
e the vertices of ()4 are the indices 1, ..., n of the chosen set eq, .. ., e, of primitive
idempotents of A;
e for two vertices ¢ and j in () 4, there is an arrow ¢ — j from 7 to 7 in Q4 if and
only if e;(radA)e; /e;(rad A)?e; # 0. Moreover, one associates to an arrow i — j
in Qa the valuation (d;;, di;), so we have in Q4 the valued arrow
with the valuation numbers are d;; = dimp, e;(radA)e; /e;(radA)?e; and
di; = dimp, e;(radA)e; /e;(rad A)e;.
It is known that Q4 coincides with the Ext-quiver of A. Namely, Q4 contains a

dijdi;) .
valued arrow i M j iff Ext}(S:, ;) # 0 and d;; = dimp, Ext}y(S;, S;), di; =

dimp, Ext}(S;,5;). An algebra A is called triangular provided its quiver Q4 is acyclic
(there is no oriented cycle in @ 4). We shall identify an algebra A with the associated
category A* whose objects are the vertices 1,...,n of Q4, Homa-(i,j) = e;Ae; for any
objects ¢ and j of A*, and the composition of morphisms in A* is given by the multi-
plication in A. For a module M in mod A, we denote by supp(M) the full subcategory
of A = A* given by all objects i such that Me; # 0, and call the support of M. More
generally, for a translation subquiver — of I'4, we denote by supp(—) the full subcate-
gory of A given by all objects ¢ such that Xe; # 0 for some indecomposable module X
in —, and call it the support of —. We also mention that supp(T") is usually different
from the support algebra Supp(I") of I". Then a module M in mod A (respectively, a
family of components C in I'4) is said to be sincere if supp(M) = A (respectively, if
supp(C) = A). Finally, a full subcategory B of A is said to be a convezr subcategory
of A if every path in Q4 with source and target in B has all vertices in B. Observe
that, for a convex subcategory B of A, there is a fully faithful embedding of mod B
into mod A such that mod B is the full subcategory of mod A consisting of the modules
M with Me; = 0 for all objects ¢ of A which are not objects of B.
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An essential role in further considerations will be played by the following result
proved in [44, Proposition 5.1].

Proposition 2.1. Let A be an algebra and X,Y be modules in ind A. Then X and
Y belong to the same component of .I' 4 if and only if there is an oriented cycle in ' 4
passing through X and 'Y .

We prove now the following property of cycle-finite cyclic components.

Proposition 2.2. Let A be an algebra and I' be a cycle-finite component of .I'4. Then
supp(T") is a convex subcategory of A.

Proof. Let C' = supp(I'). Assume to the contrary that C' is not a convex subcategory
of A. Then )4 contains a path

. . (dioiud; i ) . (di1i2vd; i ) . . <dis—1is ’d’lisfﬂs) . .
_ 01 \ 12 \ N .
1 =19 21 g —> - =2 151 7 s =],

with s > 2, 4,7 in C' and 71, ...,%,_1 not in C. Since )4 coincides with the Ext-quiver
of A, we have Ext}(S;, ,,S;,) # 0 for t € {1,...,s}. Then there exist in mod A
nonsplitable exact sequences

0—=S,—L —S, , —0,

t—1
for t € {1,...,s}. Clearly, Lq,..., L, are indecomposable modules in mod A of length
2. In particular, we obtain nonzero nonisomorphisms f, : L, — L,_; with Imf, = S;
for r € {2,...,s}. Consider now the ideal J in A of the form

J = Ae;(radA)e;, (radA) + (radA)e;, ,(radA)e; A

and the quotient algebra B = A/J. Since i; and i5_; do not belong to C' = supp(I'),
for any module M in I', we have Me;, = 0 and Me,;, , = 0, and consequently M J = 0.
This shows that I' is a cyclic component of I'g. Moreover, it follows from the definition
of J that S;, is a direct summand of the radical rad P of the projective cover P’ = ¢; B
of S; in mod B and S;,_, is a direct summand of the socle factor I7/S; of the injective
envelope I; = D(Be;) of S; in mod B. Further, since i and j are in C, there exist
indecomposable modules X and Y in I' such that S; is a composition factor of X
and S; is a composition factor of Y. Then we infer that Homp(FP/, X) # 0 and
Homp (Y, I7) # 0, because I' consists of C-modules, and hence B-modules. It follows
from Proposition 2.1 that we have in I" a path from X to Y. Therefore, we obtain in
ind A a cycle of the form

r—1)

X—)"'—>Y—>I;_>Sis,1_>Ls—1_>"'_>L2_>SZ'1_>Pi*_>X7

which is an infinite cycle, because X and Y belong to I' but S;, and S;, , are not in
['. This contradicts the cycle-finiteness of I'. Hence C' = supp(I') is indeed a convex
subcategory of A. O

Let A be an algebra, I be a component of .I'4, and A = Pr®Qr a decomposition of A
in ind A such that the simple summands of Pr/rad Pr are exactly the simple composition
factors of the indecomposable modules in I'. Then there exists an idempotent er of A
such that Pr = erA, Qr = (1 —er)A, ta(l') = A(1 — er)A, and erAer is isomorphic
to the endomorphism algebra End(Pr). In follows from Proposition 2.2 that er is a
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convex idempotent of A. Observe also that End(Pr) is the algebra of the support
category supp(I') of I'. The next result gives another description of End4(Pr) in case
the component I' of .I'4 is cycle-finite.

Proposition 2.3. Let A be an algebra and I be a cycle-finite component of JI'a. Con-
sider a decomposition A = Pr @ Qr of A in mod A such that the simple summands of
Pr/radPr are exactly the simple composition factors of the indecomposable modules in
['. Then the algebras Supp(I') and End4(Pr) are isomorphic.

Proof. Observe that the support algebra Supp(I') = A/t4(T") is isomorphic to the en-
domorphism algebra End,(Pr/Prta(I')). Moreover, Prta(I") is the right A-submodule
of Pr generated by the images of all homomorphisms from Qr to Pr in mod A. For any
homomorphism f € End4(Pr) we have the canonical commutative diagram in mod A
of the form

OHPFtA(F) HPF H'Pr/f)FtA(F) *>O

ol
0—— PFtA(F> —_— PF —_— PF/PFtA(F> — O,
where f’ is the restriction of f to Prts(T') and f is induced by f. Clearly, by the
projectivity of Pr in mod A, every homomorphism g € Enda(Pr/Prt4(T)) is of the
form f for some homomorphism f € Ends(Pp). This shows that the assignment
f — f induces an epimorphism End(Pr) — End(Pr/Prta(T)) of algebras. Assume
now that f = 0 for a homomorphism f € Ends(Pr). Then Imf C Prta(I). On
the other hand, it follows from the definition of ¢4(I") that there is an epimorphism
v: QF — Prta(I") in mod A for some positive integer m. Using the projectivity of Pr
in mod A, we conclude that there is a homomorphism v : Pr — Q7 such that f = vu.
But f # 0 implies that v # 0 and v # 0, and then a contradiction with the convexity
of Supp(I') in A = A* established in Proposition 2.2. Hence f = 0. Therefore, the
canonical epimorphism of algebras End4(Pr) — Enda(Pr/Prt4(I)) is an isomorphism,
and so the algebras End4(Pr) and Supp(I") are isomorphic. O

The following fact proved by Bautista and Smalg in [11] (see also [79, Corollary III.
11.3]) will be essential for our considerations.

Proposition 2.4. Let A be an algebra and
X=X Xi—>-=2X_1—-X,=X

a cycle in T'y. Then there exists i € {2,...,1} such that TAX; = X;_ .

Lemma 2.5. Let A be an algebra and I' be a cyclic component of I' 4. Assume that
X=X Xi1—» =X 10X, =X

1s a cycle in I'. Then the following statements hold.

(i) If all modules X;, i € {1,...,r}, are nonprojective, then I contains a cycle of
the form

TaX =TaXg > 74 X1 — - = 74X, 1 = TaX, =74 X,
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(i) If all modules X;, i € {1,...,r}, are noninjective, then I" contains a cycle of
the form

—1 —1 —1 -1 —1 —1

Proof. It follows from Proposition 2.4 that there exists i € {2,...,7} such that 74 X;
= X,_o, or equivalently, X; = Tngi_g. Hence, if all modules X;, i € {1,...,r}, are
nonprojective, then we have in ['4 a cycle

TAX:TAX0—>TAX1—)--'—)TAXZ‘—>"'—>TAXT_1—>TAX,,:TAX

with 74.X; = X;_», and hence all modules of this cycle belong to the cyclic component
[ containing X; . Similarly, if all modules X, i € {1,...,r}, are noninjective, then
we have in I'4 a cycle

X =1 X =T X = = X = T X o T X =10 X

with X; = 7, X, 5, and hence all modules of this cycle belong to the cyclic component
I' containing Xj. 0

Corollary 2.6. Let A be an algebra and U a finite cyclic component of I'y. Then T’
contains a projective and an injective module.

Proof. Assume I' does not contain a projective module. Then it follows from Lemma
2.5 that, for any indecomposable module X in I', 74X is also a module in I". Since I
is a finite translation quiver, this implies that I' = 741", and hence I' is a component
of I'4. Then there exists an indecomposable algebra B (a block of A) such that I is a
component of I'g, and consequently I' = I'g, by the well known theorem of Auslander
(see [79, Theorem III. 10.2]). But this is a contradiction, because Iz contains projective
modules. Therefore, I' contains a projective module. The proof that I' contains an
injective module is similar. 0

Let A be an algebra and C a component of I'y. We denote by ;C the left stable part
of C obtained by removing in C the 74-orbits of projective modules and the arrows
attached to them, and by ,.C the right stable part of C obtained by removing in C the
Ta-orbits of injective modules and the arrows attached to them. We note that, if C is
infinite, then ;C or ,.C is nonempty.

The following proposition will be applied in the proofs of our main theorems.

Proposition 2.7. Let A be an algebra, C a component of I' 4, and X an infinite family
of cycle-finite modules in C. Then one of the following statements hold.

(i) The stable part sC of C contains a stable tube D having infinitely many modules
from X.

(ii) The left stable part ,C of C contains a component D with an oriented cycle and
an injective module such that the cyclic part ;D of D contains infinitely many
modules from 3.

(iii) The right stable part .C of C contains a component D with an oriented cycle
and a projective module such that the cyclic part ;D of D contains infinitely
many modules from 3.
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Proof. (1) Assume first that there is a 74-orbit O in C containing infinitely many
modules from . Consider the case when O contains infinitely many left stable modules
from Y. Then there exist a module M in ON ¥ and an infinite sequence 0 = rg < 1 <
ry < ... of integers such that the modules 7/ M, ¢ € N, belong to ONX. Let D be the
component of ;C containing the modules 7y M, i € N. We have two cases to consider.

Assume D contains an oriented cycle. Observe that D is not a stable tube, and hence
does not contain a 74-periodic module, because D contains infinitely many modules
from the 74-orbit O. Hence, applying [38, Lemma 2.2 and Theorem 2.3], we conclude
that D contains an infinite sectional path

o T X o = T X o T X = X = = X — X

where t > s > 1, X; is an injective module for some i € {1,..., s}, and each module in
D belongs to the 74-orbit of one of the modules X;. Clearly, then there is a nonnegative
integer m such that all modules 74,M, r > m, belong to the cyclic part .D of D.
Therefore, the statement (ii) holds.

Assume D is acyclic. Then it follows from [38, Theorem 3.4] that there is an acyclic
locally finite valued quiver A such that D is isomorphic to a full translation subquiver
of ZA, which is closed under predecessors. But then there exists a positive integer ¢
such that 7 M is not a successor of a projective module in C, and consequently does
not lie on an oriented cycle in C. On the other hand, 7, M belongs to ¥, and then is
a cycle-finite indecomposable module, so lying on a cycle in C, a contradiction.

Similarly, if O contains infinitely many right stable modules from 33, then the state-
ment (iii) holds.

(2) Assume now that every 74-orbit in C contains at most finitely many modules
from . Since X is an infinite family of modules, we infer that there is an infinite
component D of the stable part ;C of C containing infinitely many modules from 3.
We have two cases to consider.

Assume D contains an oriented cycle. Then it follows from [82, Corollary] (see also
[37, Theorems 2.5 and 2.7]) that D is a stable tube. Thus the statement (i) holds.

Assume D is acyclic. Applying [82, Corollary] again, we conclude that there exists an
infinite locally finite acyclic valued quiver A such that D is isomorphic to the translation
quiver ZA. Let n be the rank of the Grothendieck group Ky(A) of A. Then there is
a module M in D N ¥ such that the length of any walk in C from a nonstable module
in C to a module in the 74-orbit O(M) of M is at least 2n. Then it follows from [20,
Lemma 1.5] (see also [67, Lemma 4]) that, for each positive integer s, there exists a
path

M=Xy—=X;— =Xy =1M
in ind A with all modules X; in C, and consequently a cycle in ind A passing through
M and 73 M, because there is a path

TWIM=Yy—=>Y 1 —--- =Y, =M

of irreducible homomorphisms in ind A. Moreover, M is a cycle-finite module, as a
module from . This shows that C contains oriented cycles passing through M and
any module 753M, s > 1. We also note that there is a component D’ of the left stable
part ;C of C containing all 74-orbits of D. Then there is an infinite locally finite acyclic
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valued subquiver A’ containing A as a full valued subquiver, such that D’ is isomorphic
to a full translation subquiver of ZA’, which is closed under predecessors. Then there
exists a positive integer m such that the module 7/ M is not a successor of a projective
module in C, and then 7' M does not lie on an oriented cycle in C, a contradiction. [J

Corollary 2.8. Let A be an algebra and I" be a cycle-finite infinite component of .I' 4.
Then ;I' or .I' admits a component D containing an oriented cycle and infinitely many
modules of T'.

3. PROOF OF THEOREM 1.1

Let A be an algebra and I' be a cycle-finite infinite component of .I'4. Consider
the component C of I'4 containing the translation quiver I'. Since I' is infinite and
cyclic, we conclude from Corollary 2.8 that ;C or ,.C contains a connected component
) containing an oriented cycle and infinitely many modules of I'. We claim that there
exists a cyclic coherent full translation subquiver €2 of I' containing all modules of the
cyclic part .3 of 3. We have three cases to consider:

(1) Assume ¥ is contained in the stable part ,C = ;C N,C of C. Then X is an
infinite stable translation quiver containing an oriented cycle, and hence ¥ is
a stable tube, by the main result of [82]. Clearly, the stable tube ¥ is a cyclic
and coherent translation quiver. Since X is a component of ;C and a component
of .C, we conclude that I' contains a cyclic coherent full translation subquiver
Q2 such that ¥ is obtained from €2 by removing all finite 74-orbits without 74-
periodic modules.

(2) Assume ¥ is a component of ;C containing at least one injective module. Then
it follows from [38, Lemma 2.2 and Theorem 2.3] that ¥ contains an infinite
sectional path

=T Xs = X =X 2 X — = X = X,

where r > s > 1, X; is an injective module for some i € {1,...,s}, and each
module in ¥ belongs to the 74-orbit of one of the modules X;. Observe that
there exists an infinite sectional path in X

Xy =17 X —

starting from X,. Let p be the minimal element in {1,...,s} such that there
exists an infinite sectional path in X starting from X,. Then I' contains a
cyclic coherent full translation subquiver €2 such that ¥ is obtained from 2 by
removing the 74-orbits of projective modules P lying on infinite sectional paths
in Y of the forms

P =X, = =1 7P
for some j € {p,...,s}, or
P =7 X = 7 X —

for some m > 1 and i € {1,...,s}.
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(3) Assume ¥ is a component of ,.C containing at least one projective module. Then
it follows from [38, duals of Lemma 2.2 and Theorem 2.3 that ¥ contains an
infinite sectional path

Xi—=-Xo—= =2 Xy =>7,"Xi =>71,"Xog = =1, Xy =

where m >t > 1, X; is an projective module for some j € {1,...,t}, and each
module in ¥ belongs to the 74-orbit of one of the modules X;. Observe that
there exists an infinite sectional path in X

o X S X,

ending in X;. Let ¢ be the minimal element in {1,...,¢} such that there exists

an infinite sectional path in ¥ ending in X,. Then I' contains a cyclic coherent

full translation subquiver €2 such that ¥ is obtained from €2 by removing the

Ta-orbits of injective modules I lying on infinite sectional paths in X of the

forms

e ML s X = T
for some i € {q,...,t}, or
o X o X o T

for some s > 1 and j € {1,...,t}.
Let I'y,...,I'; be all maximal cyclic coherent pairwise different full translation sub-
quivers of I'. Clearly, 'y, ..., T'; are pairwise disjoint. For each i € {1,...,t}, consider
the support algebra B® = Supp(I';) of T;.

Fix i € {1,...,t}. We shall prove that B is a generalized multicoil algebra and T;
is the cyclic part of a generalized multicoil I'} of Iz, and consequently I'; is a cyclic
generalized multicoil full translation subquiver of I'gw . Since I'; is a cyclic coherent
full translation subquiver of the component C of I'4 and of T, it follows from the proofs
of Theorems A and F in [44] that I';, considered as a translation quiver, is a generalized
multicoil, and consequently can be obtained from a finite family 7-1(1')7 cee ﬁ(f) of stable
tubes by an iterated application of admissible operations of types (ad 1)-(ad 5) and
their duals (ad 1*)-(ad 5*). We note that all vertices of the stable tubes ﬂ(i), N
are indecomposable modules of I', and the stable tubes 7'1(1')7 e ,7;(f) can be obtained
from I' by removing the modules of I'\ (7-1(i) U.. .Uﬁ(f)) and shrinking the corresponding
sectional paths in I' with the ends at the modules in ﬂ(i) U.. .u7;§.") into the arrows. We
claim now that I'; is a generalized standard full translation subquiver of I'4. Suppose
that rad™ (X, Y") # 0 for some indecomposable A-modules X and Y lying in I';. Then,
applying Proposition 2.1, we conclude that there is in ind A an infinite cycle

x Ly g sz Sz =X

where Z1,...,7Z; = X,Y are modules in I';, f1,..., f; are irreducible homomorphisms
and 0 # f € rad™(X,Y), a contradiction with the cycle-finiteness of I". Similarly,
there is no path in ind B® of the form
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with X and Y in I'; and Z not in I'; (external short path of I'; in ind B in the sense
of [56]). Since T'; is a sincere cyclic coherent full translation subquiver of T'ze), apply-
ing [45, Theorem A] (and its proof), we conclude that B is a generalized multicoil
algebra, I'; is the cyclic part of a generalized multicoil I'f of Iz, and annge (I';) =
anng (I7) = 0, and hence BY = B(T;) = B(I'}). For each j € {1,...,p;}, consider
the quotient algebra C’ = A/ annA(E(i)) of A by the annihilator annA(T( ) of the
family of 1ndecomposable A-modules forming ’Ti Then C W is a concealed canonical

algebra and 'T is a stable tube of FC@) We note that we may have C C(i) for

Jj#kin{l,... : pl} Then denoting by C® the product of pa1rw1se dlfferent algebras
in the family C’l yee ngl)’ with respect to the annihilators ann A(’Tl ), , ann A(T(f))
of ’7](1 e ,7;@, we obtain that B® is a generalized multicoil enlargement of C in-
volving the stable tubes T(i) T(f) and admissible operations of types (ad 1)-(ad 5)
and (ad 1%)- (ad 5*) correspondlng to the translation quiver operations leading from the
stable tubes T, ..., T,%) to the generalized multicoil I'*. Further, by [45, Theorem

C], we have the following additional properties of B®:
(1) There is a unlque factor algebra (not necessarily connected) Bi of BY (the
left part of B®™) obtained from C¥ by an iteration of adnnss1ble operations

of type (ad 1*) and a fannly T( T() of coray tubes in I’ obtained

B
from the stable tubes T e ,7;,1 by the corresponding coray insertions, such
that B is obtained from B ' by an iteration of adm1881ble operatlons of types
(ad 1)-(ad 5) and T'* is obtained from the family 7,”, ... 7\” by an iteration
of admissible operations of types (ad 1)-(ad 5) corresponding to those leading
from Bl(i) to B,

(2) There is a unique factor algebra (not necessarily connected) BY of BO (the
right part of B®¥) obtained from C by an iteration of admissible operations

of type (ad 1) and a family ’7'@ ’7}; of ray tubes in I" obtained from

B>
the stable tubes 7'1(i), e ,7;1 by the corresponding ray insertions, such that
B® is obtained from B” by an iteration of admissible operations of types
(ad 1%)-(ad 5*) and I'} is obtained from the family ﬁ(i), . ,’7;(1.") by an iteration
of admissible operations of types (ad 1%)-(ad 5*) corresponding to those leading
from Bﬁi) to BW,
As a consequence, the generalized multicoil I'} of ') admits a left border Al(i) and a
right border ALY having the following properties:
(a) Al(i) and A are disjoint and unions of finite sectional paths of I';;
(b) I'; is the full translation subquiver of I'f consisting of all modules which are
both successors of modules lying in Al(i) and predecessors of modules lying in
AY;
(c) T\ I'; consists of a finite number of directing B"-modules;
(d) Every module in I \ I'; which is a predecessor of a module in I'; is a predecessor
of a module in Az :
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(e) Every module in I"\ T'; which is a successor of a module in T'; is a successor of
a module in Ag);

(f) B (Agi)) = Supp(Al(i)) and is a product of tilted algebras of equioriented Dynkin
types A, and Al(i) is the union of sections of the connecting components of the
indecomposable parts of B (Al(i));

(g) B (Ay)) = Supp(Aq@) and is a product of tilted algebras of equioriented Dynkin
types A,, and A is the union of sections of the connecting components of the
indecomposable parts of B (Ay)).

We denote by I'® the union of the translation subquivers I'y,...,I';. We claim that
['\ I'““ consists of finitely modules and T'*“ is a maximal cyclic coherent full translation
subquiver of I'. Suppose that infinitely many modules of [" are not contained in I'**. We
have the following properties of modules in "\ I'“. Since I' is a connected component
of .I'4, by Proposition 2.1, for any modules M in I' \ I'“ and N in I'°“, there is an
oriented cycle in I' passing through M and N. Moreover, if N belongs to I';, then every
such a cycle is of the form

M- X—==>N=-- =Y. =M

with X in Al(i) and Y in AL, Applying Proposition 2.7 to the infinite family 3 = ['\'*
of cycle-finite modules, we obtain that the left stable part ;C or the right stable part
+C of C admits an infinite component ¥’ containing an oriented cycle and infinitely
many modules from I'\ I'®>. Then, as in the first part of the proof, we infer that there
exists a cyclic coherent full translation subquiver €2 of I' containing all modules of 3.
Obviously, €' is disjoint with I'y, ..., I';, and this contradicts to our choice of I'y, ..., I'.
Therefore, indeed, T" \ T consists of finitely many modules.

Our next aim is to show that the algebra B(I'\I'*“) = A/ann, (I'\I'*°) is of finite rep-
resentation type. We abbreviate D = B(I'\I'**). Observe that, if every indecomposable
module from mod D lies in I' \ T'°*, then D is of finite representation type. Therefore,
assume that mod D admits an indecomposable module Z which is not in I' \ I'*“. Let
M be the direct sum of all indecomposable A-modules lying in I\ I'*>. Moreover, let
D = P' @ P” be a decomposition of D in mod D, where P’ is the direct sum of all
indecomposable projective D-modules lying in I' \ I'®“ and P” is the direct sum of the
remaining indecomposable projective D-modules. Observe that M is a faithful module
in mod D and hence we have a monomorphism of right D-modules P” — M?*, which
then factors through a direct sum of modules lying on the sum AV UL uAY of
the right parts A,(ﬂl), - AY of I'1,..., I, and consequently P” is a module over the
algebra B(A(rl)) X ... X B(Af«t)). Consider also a projective cover 7 : Pp(Z) — Z of
Z in mod D. Let Pp(Z) = P,(Z) ® PA(Z), where P,(Z) is a direct sum of direct
summands of P" and P})(Z) is a direct sum of direct summands of P”, and denote
by 7’ : P(Z) — Z and 7" : P}(Z) — Z the restrictions of 7 to P, (Z) and Pj(Z),
respectively. Then 7’ : P}, (Z) — Z factors through a direct sum of modules lying on
the sum Al(l) U.. .UAl(t) of the left parts Al(l), ce Al(t) of I'y, ..., Ty, because Z does not
belong to I'\ I'®“. In particular, we obtain that 7'(P},(Z)) is a module over the algebra
B(Al(l)) X ... X B(Al(t)). Summing up, we conclude that Z = 7'(P,(Z)) + 7" (P}(Z))
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is a module over the quotient algebra
A=BAM) x ... x BAY) x B(AD) x ... x B(AD),

of A, which is an algebra of finite representation type as a product of tilted algebras of
Dynkin types A,,. Therefore, we obtain that every module from ind D which is not in
I'\ I is an indecomposable module in ind A. Since I' \ I'* is finite, we conclude that
D is of finite representation type.

Finally, let B = Supp(I') = A/ta(I"). Then I' is a sincere cycle-finite component of
J'p and anng(I') = anny (I') /t4(I"). Hence, in order to show that Supp(I') = B(T'), it
is enough to prove that I is a faithful translation subquiver of I'g. Let B = P& Q be a
decomposition in mod B such that () is the direct sum of all indecomposable projective
modules lying in I" and P the direct sum of the remaining indecomposable projective
right B-modules. Then P is a direct sum of indecomposable projective modules over
the product BM x ... x B® of generalized multicoil algebras BY, ..., B® . Since B® =
Supp(I';) = B(I;) for any i € {1,...,t}, we conclude that there is a monomorphism
P — N™ for amodule N in mod B being a direct sum of indecomposable modules lying
inl'=TI7U...UI and a positive integer m. Clearly, then there is a monomorphism
in mod B of the foom B = P& Q — (N & Q)™, and consequently I' is a faithful
component of I'g. Therefore, we obtain the equality Supp(I') = B(I').

4. PROOF OF THEOREM 1.2

Let A be an algebra and I' be a cycle-finite finite component of .['4y. Moreover,
let B = A/ta(I") be the support algebra of I'. Observe that I' is a sincere cycle-finite
component of .I'g. We will show that B is a generalized double tilted algebra, applying
[75, Theorem]|. Since I is a finite component of .I'p, it follows from Corollary 2.6 that
I' contains a projective module and an injective module. Hence, applying Proposition
2.1, we conclude that there exists in I a path from an injective module to a projective
module. Let

f1 f2 o fm—1 fm

Xpmo1 — X =P

Xi

I =X

be an arbitrary path in ind B from an indecomposable injective module I to an in-
decomposable projective module P. Since I' is a sincere translation subquiver of I'p,
there exist indecomposable modules M and N in I' such that Homg(P, M) # 0 and
Hompg(N, I) # 0. Further, it follows from Proposition 2.1 that there exists a path in
ind B from M to N. Therefore, we obtain in ind B a cycle of the form

M= i N Xy 2 Xy L2y Iy I x M

and this is a finite cycle, because M and N belong to the cycle-finite component I’
of .I'g. This shows that all the modules Xy, X1,..., X,,_1, X,, belong to the finite
translation quiver T of I'g. Then it follows from [75, Theorem] that B is a quasitilted
algebra or a generalized double tilted algebra. Furthermore, by [20, Corollary (E)], the
Auslander-Reiten quiver of a quasitilted algebra which is not a tilted algebra consists
of semiregular components. Clearly, every tilted algebra is a generalized double tilted
algebra [58]. Since the cyclic component I' of T'p contains a path from an injective
module to a projective module, we obtain that B is a generalized double tilted algebra.
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Hence, it follows from [58, Section 3] that I'g admits an almost acyclic component C
with a faithful multisection A. Recall that, following [58, Section 2], a full connected
subquiver A of C is called a multisection if the following conditions are satisfied:

(i) A is almost acyclic.

(ii) A is convex in C.
(iii) For each 7g-orbit O in C, we have 1 < |ANO| < oc.
(iv) |JAN O] =1 for all but finitely many 7p-orbits O in C.
(v) No proper full convex subquiver of A satisfies (i)—(iv).

Moreover, for a multisection A of a component C, the following full subquivers of C
were defined in [58]:

A = {X € A; there is a nonsectional path in C from X to a projective module P},

Al = {X € A; there is a nonsectional path in C from an injective module I to X},
Al ={X e Aj;m' X ¢ A}, Al ={X e A;m,X ¢ A}
A= (A\AD)UTLAY A.=ANAL A, =(A\A)UT AT

Then A, is called the left part of A, A, the right part of A, and A. the core of A.
The following basic properties of A have been established in [58, Proposition 2.4]:

(a) Every cycle of C lies in A..

(b) A, is finite.

(c) Every indecomposable module X in C is in A., or a predecessor of A; or a

successor of A, in C.

It follows also from [58, Theorem 3.4, Corollary 3.5] and the known structure of the
Auslander-Reiten quivers of tilted algebras (see [27], [31], [60], [63]) that every compo-
nent of I'g different from C is a semiregular component. Hence the cyclic component I
is a translation subquiver of C, and consequently is contained in the core A, of A. We
also know from [58, Proposition 2.11] that, for another multisection 3 of C, we have
Y. = A.. Thus A, is a uniquely defined core ¢(C) of the connecting component C of
I'p. We claim that I' = ¢(C). Let X be a module in A, = AjN A/, Then there are
nonsectional paths in C from X to an indecomposable projective module P and from
an indecomposable injective module I to X. Moreover, there exist indecomposable
modules Y and Z in I" such that Homg(P,Y") # 0 and Homp(Z, I) # 0, because I is a
sincere translation subquiver of I'g. Further, by Proposition 2.1, we have in I a path
from Y to Z. Hence we obtain in ind B a cycle of the form

X—==sP=>3Y—>. . .o =>]— - =X

which is a finite cycle because Y and Z belong to the cycle-finite component I" of .I's.
Therefore, there is in C a cycle passing through the modules X, Y and Z, and so X
belongs to I'. This shows that I' = A, = ¢(C).

Let BY = Supp(4;) be the support algebra of the left part A; of A (if A, is
nonempty) and B = Supp(A,) be the support algebra of the right part A, of A
(if A, is nonempty). Then the following description of ind B follows from the results
established in [58, Section 3]:
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(1) BW is a tilted algebra (not necessarily indecomposable) such that A; is a disjoint
union of sections of the connecting components of the indecomposable parts of
BW and the category of all predecessors of A; in ind B coincides with the
category of all predecessors of A; in ind B, or B® is empty in case A; is
empty.

(2) B is a tilted algebra (not necessarily indecomposable) such that A, is a
disjoint union of sections of the connecting components of the indecomposable
parts of B") and the category of all successors of A, in ind B coincides with
the category of all successors of A, in ind B™, or B is empty in case A, is
empty.

(3) Every indecomposable module in ind B is either in I' = ¢(C), a predecessor of
A; in ind B, or a successor of A, in ind B.

(4) If A; is nonempty, then A, is a faithful subquiver of I' 5y, and hence B is the
faithful algebra B(A;) = A/anns(A;) of A,.

(5) If A, is nonempty, then A, is a faithful subquiver of I', and hence B is
the faithful algebra B(A,) = A/anns(A,) of A,.

We will prove now that B coincides with the faithful algebra B(I') = A/anna(I")
of I'. Observe that t4(I') C anny(I') and anng(I') = anna(I")/t4(I"). Therefore, it
is sufficient to show that I' is a faithful subquiver of I'g. Let M be the direct sum
of all indecomposable B-modules lying in I". Then Mr is a sincere module in mod B,
by definition of B. In order to show that M is a faithful B-module, it is enough to
prove that there is a monomorphism B — (Mr)" for some positive integer n. Let
B = PY @ P© be a decomposition of B in mod B such that the indecomposable direct
summands of P are exactly the indecomposable projective B-modules lying in the
core I' = ¢(C) of C. Clearly, P is a direct summands of M, and hence there is a
monomorphism P® — Mp in mod B. On the other hand, the indecomposable direct
summands of P form a complete family of pairwise nonisomorphic indecomposable
projective right modules over the left tilted algebra B® of B. Hence, if PY = 0, or
equivalently the left part A; of A is empty, then B = P® and My is a faithful module
in mod B, as required. Therefore, assume that 4; is nonempty.

Let I'® be the family of all indecomposable modules X in I' such that there is an
arrow Y — X in C with Y from A;. We claim that, for any module X in I'® there
exists an indecomposable projective module P in I' such that Hompg(P, X) # 0. We
may assume that X is not projective. Then 75X is an indecomposable module not lying
in ', because we have a path 73 X — Y — X in C, with X in the cyclic component I
of I'p and Y not in I'. Observe that then 75X € A; because X isin I' = A, = AJNAL.
Consider now an oriented cycle in I’

X=X X1—- =X, 12X, =X

passing through X. It follows from Proposition 2.4 that there exists i € {2,...,r} such
that 75X; = X;_5. Since 73X does not belong to I', we then conclude that there is in
I' a sectional path

Xs = X1 ==X, 1= X, =X
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with Xy = P an indecomposable projective module. Hence we obtain that Homp (P, X) #
0, because the composition of irreducible homomorphisms in mod B corresponding to
arrows of a sectional path in I'p is nonzero, by a theorem of Bautista and Smalg [11]
(see also [79, Theorem II1.11.2]). Observe also that, for any module Y lying on A,
we have Homp(P©Y) = 0, because Y is a module in mod BY). This leads to the
following property of modules in I'™: any irreducible homomorphism f : Y — X with
X inT® and Y in A, is a monomorphism.

Consider now the family Q) of all indecomposable modules Y in A; such that there
is an arrow in C from Y to a module X in I', and hence in I'®. Moreover, let M® be
the direct sum of all indecomposable modules in Q). Observe that M® is a right B®-
module. Moreover, for any module Y in QO there is an irreducible monomorphism
Y — X in mod B with X lying in I'®. This implies that there is a monomorphism
in mod B of the form M® — (Mp)™ for some positive integer m. We will prove that
M® is a faithful right BY-module.

Let P be an indecomposable projective module in mod BY, or equivalently, an in-
decomposable direct summand of P®. Since My is a sincere module in mod B, we
conclude that there is an indecomposable module Z in I" such that Homp (P, Z) # 0.
Further, the radical radEndg(Mr) of the endomorphism algebra Endg(Mr) in nilpo-
tent. Then there exist a path of irreducible homomorphisms

I N 72, A 7 e 2y s 2 B =27

and a homomorphism vy, : P — Z; 1 inmod B with ¢195 . .. ¢1gi110401 # 0, Zo, Z1, ..., Z4
indecomposable modules in I" and Z;;; an indecomposable module in A; (see [79,
Proposition I11.10.1]). This implies that Homp(P, M®)) # 0 because Z;,; is a direct
summand of M®. Therefore, M® is a sincere right B®-module. We know also that
BW is a tilted algebra and A; is a disjoint union of sections of the connecting com-
ponents of the indecomposable parts of BY and the category of all predecessors of
A; in ind B coincides with the category of all predecessors of A; in ind B, Then we
conclude that, for any indecomposable module L in ind B®, we have

HOHIB(Z)(L, M(l)) =0 or HomB(z)(M(l), TB(z)L) = 0.

Summing up, we proved that M is a sincere module in mod B® which is not the mid-
dle of a short chain in the sense of [59] (see also [8]). Then it follows from [59, Corollary
3.2] that M® is a faithful module in mod BY. Hence, there exists a monomorphism
BY — (M®)* in mod BY for some positive integer s.

Finally, since there exist monomorphisms M® — (Mp)™ and PY — (Mr), and
B = PW g P with PO = B® in mod B, we obtain that there is a monomorphism in
mod B of the form B — (Mr)™ for some positive integer n. Therefore, My is a faithful
module in mod B, and consequently B = B(I"). This finishes the proof of the theorem.

In connection with the final part of the above proof, we mention that, by a recent
result proved by Jaworska, Malicki and Skowroriski in [28], an algebra A is a tilted
algebra if and only if there exists a sincere module M in mod A such that for any
module X in ind A, we have Hom4(X, M) = 0 or Homy (M, 74X) = 0. Moreover, all
modules M in a module category mod A not being the middle of short chains have
been described completely in [29].
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5. EXAMPLES: INFINITE CYCLIC COMPONENTS

In this section we present examples illustrating Theorem 1.1.

Example 5.1. Let K be a field and A = K@Q/I the bound quiver algebra given by
the quiver @) of the form

c 9 y v 16 19
NS O AN
10 7 17 20
N m I
™ 8 18 21 ;
0 w \
0—=1<—2 p g 22
e
“| g 5 . 15
AN Ja

3 6 12 14
I AN
4 11 13

23 <" 24 95

bs
26

A

T

and [ the ideal in the path algebra K@ of () over K generated by the elements o — o7,
&n — pv, ™k — Enpaf, pe, Yp, jl, dc, ed, gd, hg, hf, ih, av, rs, st, r>. Then A is a
cycle-finite algebra and I'4 admits a component C of the form

Shg v

=

7 S
2

The cyclic part .C of C consists of one infinite component I and one finite component
[ described as follows. The infinite cyclic component I' is obtained by removing from
C the modules 512,517,518,P17, 524, M, S267 PQG, N, 1267 W, 124, 525, and the arrows
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attached to them. The finite cyclic component I is the full translation subquiver of
C given by the vertices Sog, Pag, N, Iog, W, I54. The maximal cyclic coherent part ' of
' is the full translation subquiver of C obtained by removing from C the modules Sis,
Lz, T, S1ay, Pis = I, Sis, Par, Sa2, L, Paa, R, I, Ina, So1, Poo = Ia1, S20, S17, Pi,
Sig, Sou, M, Sog, Pag, N, Iog, W, Is4, Sos, and the arrows attached to them. Further,
['“ is the cyclic part of the maximal almost cyclic coherent full translation subquiver
['* of C obtained by removing from C the modules Pi5 = I14, Si5, Po1, S22, L, P, R,
L5, oo, So1, Pog = Is1, Sag, Pog, Iog, W, N, I54 and the arrows attached to them, and
shrinking the sectional path M — N — Iy — Ss5 to the arrow M — Sos.

Let B = A/ann(I'). Then B = A/ann,(I™), because anny(I') = anny (™). Ob-
serve that B = KQp/Ip, where Qp is the full subquiver of @) given by all vertices of
Q@ except 15, 21, 22, 26, and Ig = I N KQp. We claim that B is a tame generalized
multicoil algebra. Consider the path algebra C' = KX of the full subquiver ¥ of @)
given by the vertices 4, 5, 6, 7, 8, 9. Then C' is a hereditary algebra of Euclidean
type ]]3)5, and hence a tame concealed algebra. It is known that I'c admits an infinite
family 7,¢, A € A(C), of pairwise orthogonal generalized standard stable tubes, hav-
ing a unique stable tube, say 7,°, of rank 3 with the mouth formed by the modules
S¢ = 17057, S7 = 1cE, E = 1S5, 1whelre E' is the unique indecomposable C-module

1
with the dimension vector dimF = 1 , (see [24, Section 6] and [62, Theorem XIII 2.9]).
1

Then B is the generalized multicloil enlargement of C, obtained by applications of

the following admissible operations:

e two admissible operations of types (ad 1*) with the pivots Sg and Si2, creating
the vertices 11, 12, 13, 14 and the arrows ¢, a, b, c;

e two admissible operations of types (ad 1*) with the pivots F and Ss, creating
the vertices 3, 2, 1, 0 and the arrows 3, v, k, w, 0;

e two admissible operations of types (ad 1) with the pivots S; and Sig, creating
the vertices 16, 17, 18, 19, 20 and the arrows ¥, [, m, j, 1;

e one admissible operation of type (ad 3) with the pivot the radical of Py, creating
the vertex 10 and the arrows &, u, 7;

e one admissible operation of type (ad 1*) with the pivot V being the unique
indecomposable module of dimension 2 having S7; as the socle and Sg as the
top, creating the vertices 23, 24, 25 and the arrows v, t, u.

Then the left part BY of B is the convex subcategory of B (and of A) given by the
vertices 0, 1, 2, 3, 4,5, 6, 7, 8, 9, 11, 12, 13, 14, 23, 24, 25, and is a tilted algebra
of Euclidean type ]D)16 with the connectmg postprojective component pBY containing
all indecomposable projective B¥)-modules. The right part B of B is the convex
subcategory of B (and of A) given by the vertices 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 16, 17, 18,
19, 20, and is a tilted algebra of Euclidean type ]1514 with the connecting preinjective
component oB" containing all indecomposable injective B(-modules. We also note
that the left border A; of the generalized multicoil I'* of I'g is given by the quivers
Pi7 — S17 and Sy, and the right border A, of I'* is given by the quivers T" — I13 — Sio
and Say — M. Further, the algebra B(I'\ ') = A/ann(I"\ ') is the disjoint union
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of three representation-finite convex subcategories of A: D; given by the vertices 12,
13, 14, 15, 20, 21, 22, D, given by the vertices 17, 18, and D3 given by the vertices 24,
25, 26. We note that Dj is the faithful algebra B(I") of the finite cyclic component
I'V. It follows from [45, Theorems C and F] that the Auslander-Reiten quiver I'g of the
generalized multicoil enlargement B of C' is of the form

I's =P8ucPuQ?b,
where PP = PB(Z), Qb = QB(T), and CP is the family CZ, X € A(C), of pairwise
orthogonal generalized multicoils such that CP = I'* and CZ = T.¢ forall A € A(C)\{1}.
Hence I'4 is of the form

Ly=PAuctu o4,
where P4 = PBY 04 = 0B and CA is the family C{, A e A(C), of pairwise
orthogonal generalized standard components such that Ci* = C, C{! = T for all
A€ A(C)\ {1}. Moreover, we have

Hom, (C4, P*) = 0, Hom,(Q4,C*) = 0, Hom4(Q4, P*) = 0.

In particular, A is a cycle-finite algebra with (rad%)® = 0.

Example 5.2. Let K be a field and B = K@Q/J the bound quiver algebra given by
the quiver @) of the form

K2

38
31 %230 Y2 99 L 96 2L 32 ™2 33 19
N N
25 28 34 109 18
3 2
™ N e A .
27 157414 %2132 19
51 €1
36 37 M 17 2 16 o
pi/ \Lfl
40 <2 1 o 2 @ 3
n N
- 0 B3 A B2 5 B1 8
Y3 Y1
o 39 - 627
\\
st N ” T v3 Vo T”l " i/ 2
35 24932 99 20~ 9

.

and J the ideal in the path algebra K@ of ) over K generated by the elements 1)1,
M P2, W1040302, T33P, Aafla, Noke —ThP1K1, Yok, Waka, Yobl, 01, 1102 —1u130,, azpr,
>\102, §&ip1 — fzpz, a3y + 515253 + 717273, 101, 201, 10, €101, €102, €302, Y1l
v17y3. Denote by Py, I, Sk the indecomposable projective module, the indecomposable
injective module, and the simple module in mod B at the vertex k of (). Then I'g admits
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a cyclic component C obtained by identification the sectional paths H; — Hy — Hj,
Ly — Ly, Ny — Ny and the module Sy; occurring in the following three translation
quivers: C; of the form

IR N AN N

INNN N

N 2NN N N

INININNNS
NNAS NN NN N
ININNININ NN
NNINN N NN
INININTNININ N
NNINN NN NN
f\f\f\f\f\f\f\f

| N
C, of the form

NN N NN
NN N N AN
\f\f\f\f\f\f\f

f\f\f\f\f\f\f\
\/\/\f\/\f\f\f\f\f

f\/\fgf\f\/\/\/\/\
\/\/\f\/\f\f\f\f\f

/\/\/\f\f\f\f\f\f\
\/\/\f\f\f\f\f\f\f

/\/\f\f\f\/\/\/\f\

4
N

and Cs of the form

RN NN
NNINNS NS
NN NN N N P
ONNIININNINN NN NN

\f\f\/\f\f\f\/\/\ \/\/\/\
f\f\f\f\f\/\f\f\f\ \f\f\f
\f\f\/\f\f\f\/\/\/\/\/\/\
f\f\f\/\f\f\f\f\f\f\f\f\f
\f\f\/\f\f\f\/\/\/\/\/\/\
f\f\f\/\f\f\f\f\f\f\f\f\f
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where X = I35 = Pso, Y = I39 = Py, Z = 1,90 = Pig, Ny = Iy and the vertical dashed
lines have to be identified in order to obtain the translation quivers C;, Co and Cj.
We claim that B is a generalized multicoil algebra. Denote by Q)¢ the full subquiver
of @) given by the vertices 0,1,2,3,4,5,6,7,8. Consider the bound quiver algebra
C' = KQ¢/Jo with Jo the ideal in KQ¢ generated by ayasasay + 5152083 + 117273
and the path algebra D = K@Qp of the full subquiver Qp of ) given by the vertices
25,26,27,28. Then C' is a canonical algebra of wild type and D is a canonical algebra
of Euclidean type As. Tt is known that I'c admits an infinite family TC, A € A(C), of
pairwise orthogonal stable tubes, having a unique stable tube, say 7,°, of rank 4 with
the mouth formed by the modules S; = 7¢.5,, Sy = 7653, S5 = 7c E, E = 751, where
E is the unique indecomposable C-module with the dimension vector dimF = 10%0%01 ,
and a stable tube, say T.C, of rank 3 with the mouth formed by the modules Sg = 757,
S; = 1cF, F = 17¢Ss, where F is the unique indecomposable C'-module with the di-
mension vector dimF' = 11(1)1(1)11 (see [60, (3.7)]). Moreover, I'p admits an infinite family

’7;D , ;1 € A(D), of pairwise orthogonal stable tubes, having a stable tube, say 7,7, of
rank 2 with the mouth formed by the modules Sy = 7pG, G = TpSag, where G is the
unique indecomposable D-module with the dimension vector dimG = 1(1)1. Denote by
C; = KQ¢,/Je, the bound quiver algebra, where Q¢, is the full subquiver of @) given
by the vertices 0, 1, 2, ...,i,i > 8 (Cs = C), Jo, = JNKQq,, and by D; = KQp,/Jp,
the bound quiver algebra, where Qp, is the full subquiver of @ given by the ver-
tices 25, 26, 27, ...,j, j > 28 (D = D), Jp, = J N KQp,. Moreover, for each
k € {8,9,...,39} (respectively, k € {28,29,...,33}) and [ € {0,1,...,39} (respec-
tively, [ € {28,29,...,33}), we denote by Bck,[lck,Slck (respectively, PZD’“,IZD’“,SZD’“)
the indecomposable projective module, the indecomposable injective module, and the
simple module in mod Cy, (respectively, in mod Dy) at the vertex [ of Q¢, (respec-
tively, of @p,). Then B is the generalized multicoil enlargement of C' x D, obtained
by applications of the following admissible operations:

e one admissible operation of type (ad 1*) with the pivot S?)C 8, creating the vertices
9, 10, 11 and the arrows 41, d2, J3;

e one admissible operation of type (ad 1*) with the pivot SZC 11 creating the ver-
tices 12, 13, 14, 15 and the arrows oy, 09, 03, 04;

e one admissible operation of type (ad 1) with the pivot S 1C 5 creating the vertices
16, 17 and the arrows &1, &9;

e one admissible operation of type (ad 4) with the pivot S$'7 and the finite
sectional path SICO” — Ilco”, creating the vertices 18, 19 and the arrows 1, eo,
€3;

e one admissible operation of type (ad 1*) with the pivot S7C 19 creating the ver-
tices 20, 21 and the arrows py, po;

e one admissible operation of type (ad 1) with the pivot 560 2 creating the vertices
22, 23, 24 and the arrows vy, vy, U3;

e one admissible operation of type (ad 1*) with the pivot S52®, creating the
vertices 29, 30, 31 and the arrows 1, 9, ¥9;
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one admissible operation of type (ad 1) with the pivot W being the unique
indecomposable module of dimension 2 having S5 as the socle and Sk as
the top, creating the vertices 32, 33 and the arrows 7, 19;

one admissible operation of type (ad 4) with the pivot S%* and the finite
sectional path [ %24 024 510524, creating the vertex 34 and the arrows wy,
W2;

one admissible operation of type (ad 4) with the pivot S5#* and the finite
sectional path [3%34 — 536134, creating the vertices 35, 36 and the arrows 7, 7o,
T35

one admissible operation of type (ad 4) with the pivot 510736 and the module

201 , creating the vertex 37 and the arrows Ay, Ag;

one admissible operation of type (ad 2*) with the pivot P$, creating the vertex
38 and the arrows ki, Ks.

one admissible operation of type (ad 2*) with the pivot P20238, creating the vertex
39 and the arrows 6, 05.

one admissible operation of type (ad 2*) with the pivot P, creating the vertex
40 and the arrows pq, ps.

Then the left part B® of B is the convex subcategory of B being the product B =
B, M % Bél), where B( / J is the branch coextension of the canonical algebra

C and B, - K Q2 / J is the branch coextension of the canonical algebra D given by
the quivers

38

K1

31 %% 30 2 929 2L 26

QY

v N
25 28 11 5 10 5 9
N, S

4 g2

15 2414 213 —2 19

17 o1
P2
/ pP1 as Qa2
40 1 2 3
a4 a1
Q(l) 0 /53 A B2 5 51\ 8
Y3 /
39 02 6«22 7
01 T 1 i
24 £ 93 20291

and the ideals JP = KQYnJin KQV and J{’ = KQVY nJ in KQ. The right

part B("

of B is the convex subcategory of B being the product B(") = BY) X Bg),

where B{"” = KQ\”/J\") is the branch extension of the canonical algebra C and B =
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K Qg) / JQ(T) is the branch extension of the canonical algebra D given by the quivers

31 -*% 30 26 21 32 ™. 33

19
N TN
25 28 34 1l ———— 10 18
3
& N
27 15 %14 213
36 37 M 17 % 16
ifl
1 @3 2.2 3
ay Yl
o Y) 0 B3 4 B2
\\x /
o 6
N\ T
35 o 242 932 99 21

et -

and the ideals J” = KQ”' nJ in KQ\” and J{” = KQ{' nJ in KQY. Tt follows

from [45, Theorems C and F| that the Auslander-Reiten quiver I'p of the generalized

multicoil enlargement B of C' x D is of the form
I's =PPucPug?b,

where PB,CP, QF are of the following families of components:

e CB is a family of pairwise orthogonal generalized multicoils consisting of the
faithful cyclic component C (described above), the family 7.6, A € A(C)\{1,2},
of stable tubes of ', and the family 7., u € A(D)\ {1}, of stable tubes of
['p;

o PB = PBY and counsists of the unique postprojective component P(A(ll)) of the
wild concealed algebra A(l) being the convex subcategory of B(l) given by all
object of B( except 8, the unique postprOJectlve component 77( ) PB: 3
of the tilted algebra B( of Euclidean type A7, one component w1th the stable
part ZA ., containing the indecomposable projective B{ ) _module at the vertex

8, and infinitely many regular components of the form ZA ;

e 08 = 08" and consists of the unique preinjective component Q(A; (r) ) of the
wild concealed algebra A( ) being the convex subcategory of B( ) given by all
object of B( except 0 the unique premjectlve component Q(B(T ) = QBW of
the tilted algebra B ) of Euclidean type Ag, one component with the stable
part ZA,, containing the indecomposable injective B£ -module at the vertex

0, and infinitely many regular components of the form ZA .
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Moreover, we have
Homp(C®,PP) = 0, Homp(Q7,C?) = 0, Homp(Q”, PP) = 0.

We also note that B is not a cycle-finite algebra, because ['p contains regular compo-
nents of the form ZA ., (see [67, Lemma 3]).

Finally, we mention that the cyclic component C of I'p is the cyclic generalized
multicoil obtained from the stable tubes T,°, T.¢ of I'c and the stable tube T,” of
['p by the 14 translation quiver admissible operations [44, Section 2] corresponding to
the 14 admissible algebra operations leading from C' x D to B, described above. We
also point that the cyclic component C has a Mobius strip configuration obtained by
identifying in C3 two sectional paths Ny — Ns.

6. EXAMPLES: FINITE CYCLIC COMPONENTS

In this section we present examples illustrating Theorem 1.2 and showing faithful
almost acyclic Auslander-Reiten components of new types.

Example 6.1. Let K be a field, n > 7 a natural number, and A4, = K@,/I, the
bound quiver algebra given by the quiver @), of the form

2
) / \
O()(Ll 5%, g T, ... ol

o w

3

On
n—1—sn

4

0

and I,, the ideal in the path algebra KQ,, of Q,, over K generated by the elements 2, ne
and 7y — pdw. Then the category mod A, is equivalent to the category repy (Qn, I,,)
of the K-linear representations of the bound quiver (Q,,I,,). Consider the indecom-
posable module M,, in mod A,, corresponding to the indecomposable representation in
repy (Qn, I,) of the form

K/\KlKl---l
N A

1 1

K

(66
[1]

-

]
G{? KK

K

1

We note that M, is a faithful A,-module, and hence B(M,) = A,. Let €, be the
full subquiver of @, given by the vertices 2,3,4,5,6,...,n — 1,n and the arrows
v,0,w, 06,07, ..., On_1,0,, and H, = K¢, the associated path algebra. Then H,
is a hereditary algebra. Observe that H;, Hg, Hy are hereditary algebras of Dynkin
types Eg, E;, Eg (respectively), Hyg is a hereditary algebra of Euclidean type Eg, and,
for n > 11, H,, is a hereditary algebra of wild type. For each i € {0,1,...,n —1,n},
we denote by P;, I;, S; the indecomposable projective module, the indecomposable in-
jective module, the simple module in mod A,, at the vertex i of @),,. Moreover, for
each j € {2,3,4,...,n — 1,n}, we denote by I7 the indecomposable injective module
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in mod H,, at the vertex j of Q,. Further, let A = K[¢]/(?). Then P, is the indecom-
posable projective module in mod A and Sy is its top. Finally, observe that A, is the
one-point extension algebra

AxH, O

{So oIy K }
of A x H,, by the module Sy @ I}, with the extension vertex 1. Since I is the inde-
composable injective module in mod H,, and H, is a hereditary algebra, we conclude
that

HomAXHn(SO D I:b, THnX) = HOIHHH([:L, THnX) =0

for any module X in ind H,. Then, applying [63, Corollary XV.1.7] (see also [78,
Lemma 5.6]), we conclude that every almost split sequence in mod H,, is an almost
split sequence in mod A,,. This implies that the Auslander-Reiten quiver 'y, of H,, is
a full translation subquiver of the Auslander-Reiten quiver I'4, of A,,. In particular, we
obtain that the preinjective component Q(H,) of I'y, , containing the indecomposable
injective modules I7 , j € {2,3,4, ...,n — 1,n}, is a full translation subquiver of a
component C, of I'4 which is closed under predecessors. Then the direct calculation
shows that C, is a component of the form

Observe that C, is an almost acyclic component of I'4,, contains the faithful module
M, and is closed under successors in ind A,,. Hence C, is a faithful, almost acyclic,
generalized standard component of I'4. Then it follows from [58, Theorem 3.1] that A,
is a generalized double tilted algebra and C, is its unique connecting component. We
also note that C,, admits a unique multisection A = A,, consisting of all indecomposable
modules in C,, which lie on oriented cycles passing through the simple module Sj.
Moreover, we have A} = A = Al and hence A = A.. Further, the left part A,
of A coincides with 74, A} and consists of the indecomposable modules I7, for j €
{2,3,4,...,n — 1,n}. Similarly, the right part A, of A coincides with TX;A;’ and
consists of the indecomposable injective modules Iy, I, I3, I,. Therefore, the left tilted
part AW of A, is the hereditary algebra H,, and the right tilted part Al of A, is the
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path algebra KX of the quiver ¥ of the form

B 0

9 1 i

3

Observe now that A = A, is a cycle-finite finite component of .I'4  containing the
faithful indecomposable module M,,, because C, is a generalized standard component
of I'4 closed under successors in ind A,,. In particular, we conclude that A is the cyclic
component I'(M,) of the module M, and B(I'(M,)) = B(M,) = A, is a generalized
double tilted algebra. We also mention that A7, Ag, Ag are of finite representation type
with I'y, = C7, T4, = Cs, I'a, = Cy, and hence are cycle-finite algebras. Further, A;g
is a cycle-finite algebra of infinite representation type whose Auslander-Reiten quiver
has the disjoint union decomposition

FAIO = P(HIO) U THlO U Co,

where P(Hy) is the postprojective component and 71 an infinite family of pairwise
orthogonal generalized standard stable tubes of I'y7,,. On the other hand, the algebras
A, for n > 11, are not cycle-finite because their Auslander-Reiten quivers admit regu-
lar components of 'y being of the form ZA ., and hence consisting of indecomposable
modules lying on infinite cycles (see [67, Theorem|). More precisely, for n > 11, the
Auslander-Reiten quiver of A,, has the disjoint union decomposition

L4, =P(H,) UR(H,) UC,,
where P(H,,) is the postprojective component and R(H,,) is an infinite family of regular
components of the form ZA in I'yy,. We also mention that the algebras A,,, forn > 7,

are of infinite global dimension, because the simple module S is of infinite projective
dimension.

4.

Example 6.2. Let K be a field, m,n > 8 natural numbers, and B,,,, = KQun/Imn

the bound quiver algebra given by the quiver @, ,, of the form
X
6/
A

3 g /}\ . 3
/)7/7\\\ o/ N\J ///
2$1—7»yiy
V ¢ / Tﬁ7
5<% 4 f < 5 7'

6
J 1

Qm,—1 \L Tﬁnfl
Bn

= ! (n—1)

m—1—"—=m n
and I, ,, the ideal in the path algebra KQ,, , of @y, over K generated by the elements
af, oa, Bo, oo, Eo — nwp, e — Av. Then the category mod B,,,, is equivalent
to the category repy (Qum.n, Imn) of the K-linear representations of the bound quiver
(Qmons Im ). Consider the indecomposable module M,, in mod B, ,, corresponding to




FINITE CYCLES OF INDECOMPOSABLE MODULES 35

the indecomposable representation in rep(Qm.n, Imn) of the form

K/ \ N;(%O/ \0
1}(\11( LK \0<—0/(T)
X !

K— > K 0——0
and the indecomposable module N,, in mod B,, ,, corresponding to the indecomposable
representation in repy (Qum.n, Imn) of the form

RN N
\ /1

0 O»K K
| N
0 0=—0 K K K
| )
| Tl
0——0 K—' - K

We note that M, & N, is a faithful B,, ,-module.

Let €2,,, be the subquiver of (), », given by the vertices 3,4,5,6,7,...,m—1,m and the
arTows 0, W, U, o7, Qg, ..., U1, O, and H,,, = K, the path algebra of 2, over K.
Similarly, let 2/ be the subquiver of @, ,, given by the vertices 3',4',5',6',7,...,(n —
1)/, n" and the arrows ¢, 0, \, 57, Bs, ..., Bn_1, On, and H! = KQ/ the path algebra of
¥ over K. Then H,, and H, are hereditary algebras. Moreover, Hg and H{ are of
Dynkin type Eg, Hy and H{ are of Dynkin type E7, Hyy and Hj, are of Dynkin type
Es, Hy; and Hj, are of Euclidean type Eg, and H,, and H/, for m,n > 12, are of wild
type. For each i € {3,4,...,m — 1,m}, we denote by I} the indecomposable injective
H,,-module at the vertex 7. Similarly, for each j" € {3',4’,...,(n —1)’,n'}, we denote
by P}, the indecomposable projective H-module at the vertex j’. Furthermore, for
each vertex ¢ of @), ,, we denote by F;, I;, S; the indecomposable projective module,
the indecomposable injective module, and the simple module in mod B,,, ,, at the vertex
i. Finally, we denote by X the subquiver of @),,,, given by the vertices 0,1,1" and the
arrows «a, 3,7, and A = K¥/J the bound quiver algebra with J the ideal in the path
algebra K'Y of ¥ over K generated by afS. We denote by R and T the indecomposable
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modules in mod A corresponding to the representations

0\ (%]/Kz\[(ll}
1 K 1 K

in repy (X, J), respectively. Moreover, denote by P; the indecomposable projective
A-module at the vertex 1 and by I, the indecomposable injective A-module at the
vertex 1, and observe that P, is the indecomposable projective A-module at the vertex
0 and Iy is the indecomposable injective A-module at the vertex 0.

We claim that B,,, is a generalized double tilted algebra and the indecompos-
able modules M,,, and N,, belong to a cycle-finite cyclic component I, ,,, and hence
B(T'n.0) = Bmn. More precisely, we will show that I, ,, is the cyclic part of the almost
acyclic generalized standard component C,,, of I'g,, , obtained by identification the
modules R, T and S occurring in the following two translation quivers: C,, of the form

[
K and K
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Let @, be the subquiver of (), ,, given by the vertices 1’, 0, 1, 2, 3,4, 5,6, 7,...,m —
1,m and the arrows «, 8, v, &, 0, 0, W, [, Q7, A8, ..., QUym_1, U, Jy the ideal in the
path algebra KQ,, of Q,, over K generated by af, oo, £o —nwp, and Cy,, = KQp/Jm
the associated bound quiver algebra. Then C,, is the one-point extension algebra
Ax H, 0
Rol, K
of A x H,, by the module R & I}, with the extension vertex 2. Since I is the
indecomposable injective module over the hereditary algebra H,,, we conclude that

Homaxp,, (R ® I, Tr,, X ) = Homy,, (I, 75,, X) = 0

for any indecomposable module X in mod H,,. Then, applying [63, Corollary XV.1.7]
(or [78, Lemma 5.6]), we conclude that every almost split sequence in mod H,, is an al-
most split sequence in mod C,,. This implies that the Auslander-Reiten quiver 'y, of
H,, is a full translation subquiver of the Auslander-Reiten quiver I'c.  of C},,. Moreover,
a direct calculation shows that the component C,, of I'¢, , containing the indecompos-

able injective H,,-modules I}, i € {3,4,5,6,7,...,m — 1,m}, is the translation quiver
obtained from the translation quiver C, and the translation quiver below
So R
NN
P, I
S \ / \

Sy
\/\/

0

by identifying the common modules R, Iy, Sy, T, Iy and S;. We observe that the
Auslander-Reiten quiver I'c, ~ consists of the component C,, and the components of
'y, different from the preinjective component. We also note that the indecomposable
module M, is a unique sincere module in ind C,,, and M,, is not a faithful module in
mod C,,.

Dually, let @/, be the subquiver of Q,,, given by the vertices 1, 0, 1, 2/, 3/, 4',
5,6, 7,...,(n—1),n and the arrows «a, 8, v, 0, ¥, @, v, 0, X\, Bz, Bsy- -+, Bn-1, Bn,
J! the ideal in the path algebra K@, of Q! over K generated by af, 59, pip — Ay,
and C!, = K@ /J! the associated bound quiver algebra. Then C! is the one-point
coextension algebra

K 0
Homg(R& P, K) Ax H)
of A x H), by the module R @ P, with the coextension vertex 2’. Since P, is the
indecomposable projective module over the hereditary algebra H/, we conclude that

HOHIAXH;L (Tﬁ,lY, R P;/) = HOIﬂHa(Tg}Y, P:/) =0
for any indecomposable module Y in mod H,. Then, applying the dual of [63, Corollary
XV.1.7] (or [78, Lemma 5.6]), we conclude that every almost split sequence in mod H,

is an almost split sequence in mod C/,. This implies that the Auslander-Reiten quiver
Iy, of H), is a full translation subquiver of the Auslander-Reiten quiver I'cy of C,.
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Moreover, a direct calculation shows that the component C;, of I'cs, containing the
indecomposable projective H,-modules Pj;, j" € {3',4,5,6",7',...,(n—1)",n'}, is the
translation quiver obtained from the translation quiver C;" and the translation quiver
below
R So
SN S
P Iy
S \ / \

N / \ /
Fo

by identifying the common modules Sy, Fp, Pl, R, T and Sy. We observe that the
Auslander-Reiten quiver I'cy consists of the component C,, and the components of I'p;
different from the postprojective component. We also note that the indecomposable
module N, is a unique sincere module in ind C}, and N,, is not a faithful module in
mod C.

Further, we observe that the algebra B, ,, = KQum.n/Imn is the one-point extension
algebra

St

C/'xH, 0

l Rol, K }
of C) x H,, by the module R & I, with the extension vertex 2. It follows from
the structure of the Auslander-Reiten quiver I'c; of (), that, for any indecomposable
module Z in mod C/ nonisomorphic to the simple module Sy, we have

HOHICLXHW(R D I:;,TCZZ) = HOHIC%(R, TC;IZ) =0.

Then, applying [63, Corollary XV.1.7] (or [78, Lemma 5.6]) again, we conclude that
every almost split sequence in mod C), with the right term nonisomorphic to Sy is an
almost split sequence in mod B,,,,. This shows that the translation quiver obtained
from I'c; by removing the module Sy and two arrows attached to it is a full translation
subquiver of I'g,, . In particular, we conclude that the almost split sequence in mod Cj,
with the left term Sy is an almost split sequence in mod B,, ,,.

Finally, we observe that the algebra By, , = KQpn/In.n is also the one-point coex-
tension algebra

K 0
Homg(R&® P, K) Cp x H),

of C,, x H], by the module R@® P},, with the coextension vertex 2'. It follows also from
the structure of the Auslander-Reiten quiver I'c  of C,, that, for any indecomposable
module Z in mod C,,, nonisomorphic to the simple module Sy, we have

HOIﬂmeH;(TE,,IL Z,R®P) = HomCm(TC?"lL Z,R) =0.

Then, applying the dual of [63, Corollary XV.1.7] (or [78, Lemma 5.6]) again, we
conclude that every almost split sequence in mod C,,, with the left term nonisomorphic
to Sy is an almost split sequence in mod B,,, ,,. This shows that the translation quiver
obtained from ' by removing the module Sy and two arrows attached to it is a full
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translation subquiver of I'g,, . In particular, we obtain that the almost split sequence
in mod C,,, with the right term Sy is also an almost split sequence in mod B,,, ,,.

Summing up, we proved that I'g, . contains the component C,, ,, of the required form,
containing the preinjective component Q(H,,) of I'y, as a full translation subquiver
closed under predecessors and the postprojective component P(H,) of I'y: as a full
translation subquiver closed under successors. Moreover, the Auslander-Reiten quiver
I'p,,. of By, , has a disjoint union decomposition

' =PunUCrnUQmn

such that

e P, is empty for m € {8,9,10};

e Py, consists of the postprojective component P(Hy;) of Euclidean type I~E8
and an infinite family 7711 of pairwise orthogonal generalized standard stable
tubes in 'y, ;

® P,n, for m > 12, consists of the postprojective component P(H,,) of wild type
and an infinite family of regular components of the form ZA in I'y, ;

e O, is empty for n € {8,9,10};

e Q,,11 consists of the preinjective component Q(H};) of Euclidean type Eg and
an infinite family 711 of pairwise orthogonal generalized standard stable tubes
in Uy 5

e Q.. for n > 12, consists of the preinjective component Q(H),) of wild type
and an infinite family of regular components of the form ZA, in I'g; .

Finally, observe that C,, , is an almost acyclic component of I'g,, , whose cyclic part
I, is connected and consists of all indecomposable modules in C,, ,, which lie on ori-
ented cycles passing through the simple module Sy. In fact, I',, , is the unique multisec-
tion A of C,, ,,, and so A, =TIy, ,,. Further, I, ,, contains the indecomposable modules
M,, and N,,. Since M,,®N,, is a faithful module in mod B,), ,,, we conclude that I',, ,, is a
faithful cyclic component of I'g,, ., and hence B, ,, = B(I'yn) = Bpn/anng,, ,, (I'mn)-
Observe also that B,,,, = Supp(l',, ). In particular, C,,, is a faithful component of
I's,.,.. Moreover, the left part A; of A coincides with 7p,, A and consists of the
indecomposable modules I, i € {3,4,...,m — 1}, and the indecomposable modules
Py, ngmPg/, Tgi’npg,/, ngszg, Téi’npy. Similarly, the right part A, of A coincides
with Tgﬂlw A7 and consists of the indecomposable modules Pj, j' € {3',4',..., (n—1)'},
and the indecomposable modules I, 75, ,I2, 7B, .13, TB,,.14, TB,, . I5s. Observe also
that Q(H,,) is a generalized standard component of 'y, , P(H,) is a generalized stan-
dard component of I'y;, and Homp,, ,(P,Q) = 0 for any indecomposable modules
P e P(H)) and @ € Q(H,,). This shows that C,,,, is a generalized standard compo-
nent of I'g,, .. Then it follows from [58, Theorem 3.1] that B,,,, is a generalized double

tilted algebra. Moreover, the left tilted part By(rll)n is the product H,, x H' of H,, and
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the path algebra H' = K of the quiver €’ of the form

and Dynkin type D5, while the right tilted part By(,f)n is the product H/ x H of H/ and
the path algebra H = K of the quiver {2 of the form

F<—2 4

and Dynkin type 5. In particular, we obtain that B,,, is a tame generalized double
tilted algebra (equivalently, cycle-finite algebra) if and only if m,n € {8,9,10,11}.
Clearly, B, is of finite representation type if and only if m,n € {8,9,10}. Finally,
we note that the algebras B,, ,, for all m,n > 8, are of global dimension three, with
the simple module S; having the projective dimension three.
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