
Rule discovery

Włodzisław Duch,

Department of Informatics, Nicolaus Copernicus University, Poland,

School of Computer Engineering, Nanyang Technological University, Singapore,

wduch@is.umk.pl

Synonyms
Logical rule extraction; understanding data

Definition
Rule discovery or rule extraction from data are data mining techniques aimed at

understanding data structures, providing comprehensible description instead of only black-

box prediction. Rule-based systems should expose in a comprehensible way knowledge

hidden in data, providing logical justification for drawing conclusions, showing possible

inconsistencies, and avoiding unpredictable conclusions that black box predictors may

generate in untypical situations. Sets of rules are useful if rules are not too numerous,

comprehensible, and have sufficiently high accuracy. Rules are used to support decision

making in classification (Classification, Machine Learning), regression(Regression,

Statistics) and association tasks. Various forms of rules that allow expression of different

types of knowledge are used: classical prepositional logic (C-rules), association rules (A-

rules), fuzzy logic (F-rules), M-of-N or threshold rules (T-rules), similarity or prototype-based

rules (P-rules). Algorithms for extraction of rules from data have been advanced in Statistics,

Machine Learning, Computational Intelligence and Artificial Intelligence fields.

Characteristics
Types of Rules

Different types of rules are used to express different types of knowledge.

Classical logic rules (C-Rules) that have the form of logical propositions IF ... THEN

provide the simplest and most comprehensible way of expressing knowledge. Arguments

(conditions) and conclusion are logical (binary) functions that may take two values, true or

false. Decision rules in classification or regression problems have this form, with the

consequent part of the rule representing conclusion in situations characterized by some

object X (usually a feature vector) for which certain conditions are satisfied:

IF condition1(X) AND condition2(X) … THEN conclusion(X)

For example, a diagnostic rule derived from a benchmark dataset on breast cancer (Duch et

al., 2004) shows in which conditions recurrence of breast cancer is expected:

IF number of involved nodes >1 AND degree of malignancy = 3 (highest) THEN recurrence

ELSE no-recurrence

The accuracy of this rule is on par with any other classification system, each of the two

conditions involves a threshold and a single feature (out of nine features that describe each

case in the database), and contains rather trivial (for medical doctors’) knowledge:

recurrence of the breast cancer is expected if there are many involved nodes, and the

cancer is highly malignant.The ELSE conclusion handles the default class, covering the

space that has not been taken by explicit rules.

This particular dataset does not contain more information related to the recurrence/non-

recurrence question. However, it may contain interesting correlations between features,

correlations that characterize a cluster of interrelated attribute values. Association rules (A-

rules; Piatetsky-Shapiro, 1991) represent such correlations as rules with implications:

IF attribute1 S1 AND attribute2 S2 … THEN attributek in Sk

where Si is a subset of attribute values.

Advantages: prepositional C-rules give the simplest and most comprehensible description of

the data; predicate functions that define conditions may use any type of attributes; it is easy

to control complexity of data description and thus to avoid overfitting of the data, thereby

ensuring good generalization.

Disadvantages: C-rules always partition the feature space into hyperboxes, therefore for

continuous features, they provide a step-like approximation of decision borders, limiting

accuracy in many cases. A small number of accurate C-rules is rather rare.

Decision trees are equivalent to hierarchical sets of C-rules, splitting first the whole feature

space and then successively each subspace, reducing flexibility of rule-based knowledge

representation. In general, the expressive power of C-rules is limited. Three other types of

rules – fuzzy, threshold and prototype-based rules – offer more flexible decision borders

while still retaining interpretability.

Fuzzy rules (F-rules)

Statements like “Old age and overweight and high blood pressure are risk factors for heart

problems” are commonly used but knowledge contained in them cannot be easily converted

into crisp logical rule. Fuzzy logic rules have the same form as propositional rules, except

that their conditions are not binary predicate functions, but rather real valued functions

estimating the degree to which a given condition is fulfilled or true. Predicate functions

condition(X) are simply replaced by membership functions that characterize in a numerical

way the membership of X in sets described by linguistic terms. For example

“old_age(age(X))” estimates to which degree a variable age defined for X fits the definition of

old age. This is expressed by conditions in form of “age of X is old”, or simply by defining

membership function old_age(age(X)) that increases from 0 for age < 50 to 1 for age > 80.

The definition of such membership functions should match common usage, but is rather

arbitrary.

The conclusion of a fuzzy rule may either be a typical fuzzy term (similar to the premise

conditions), or some function of input variables (useful for approximation). The theory of

fuzzy sets and fuzzy logic helps to draw conclusions from imprecise statements converting

them into mathematical formulas. For example,

IF old_age(age(X)) AND high_bp(blood_pressure(X)) THEN heart failure of X is high

where X represents some description of a person. Conditions old_age and high_bp express

membership degrees in [0,1] and have little to do with probabilities, while the conclusion is

an implication of a discrete event and may be interpreted as high probability that this event

occurs. In effect, imprecise natural language statements are converted into rules that use

fuzzy concepts and soft implications.

Advantages: conclusions of F-rules change smoothly rather than being absent or present,

and therefore approximate gradual changes, thereby avoiding pitfalls of crisp logic applied to

real-valued measurements. The general form of F-rules captures imprecise knowledge

contained in natural language statements and may help to add a priori knowledge defining

initial structure of predictive systems that learn by parameter adaptation. Accurate statistical

or other predictive systems may be more accurate in most cases, but F-rules may still be

useful to provide linguistic comments summarizing and explaining the results.

Disadvantages: there is no unique way to define membership functions for linguistic

variables (especially symbolic variables), or to define meaning of fuzzy operators, such as

fuzzy implication. Real variables (such as age or blood pressure) are used by many

classifiers directly providing accurate predictions without the need to create fuzzy variables.

The complexity of the F-rule sets is frequently too high to understand what they really mean.

Threshold rules (T-rules)

C-rules or F-rules are not useful in situations when too many alternative conditions lead to

the same conclusion. For example, if a sufficiently large number of dendritic inputs is

activated, then the neuron will fire, which is a type of “majority votes for action” rule.

Designating the number of total inputs by N and the active inputs by M, this rule may be

expressed as:

IF M conditions out of N conditions are True THEN Conclusion is True

Such rules are also known as the M of N rules. The general form of T-rules assumes that

each condition Xi is a real number in [0,1] associated with weight Wi measuring its

importance, and conclusion follows if sufficient evidence is accumulated:

IF ∑ ��
�
��� �� ≥ � THEN Conclusion is True

For example, a majority vote may be expressed using binary weights and conditions with

 = 0.5. An equivalent propositional logic or fuzzy rule would require ��
�
� terms. Decision

borders for such rules are hyperplanes in N-dimensional feature space. Sets of T-rules

generate intersection of hyperplanes defining complex regions where conclusions are true.

In this general form, T-rules include all C-rules (weights are 1 only for conditions used in the

C-rule and zero otherwise, and the threshold is equal to the number of conditions).

Advantages: T-rules add a lot of flexibility to C-rules, represent all voting-like problems in

natural way, and provide accurate classification whenever linear discrimination works well.

Disadvantages: linear mixing may not be the best way to aggregate evidence, and semantic

interpretation of such rules may not be easy.

Prototype-based rules (P-rules)

Conclusions are frequently justified by recalling similar well-known cases, or prototypes.

Brains estimate similarity in a way that may be hard to analyze using individual features,

leading to “intuitive” decisions. Similarity and distance (or dissimilarity) usually can be used

interchangeably. Given a case X and a prototype R a threshold P-rule has the form:

IF D(X,R) ≥THEN Conclusion is True

Similarity may also be used in a nearest neighbor rule. In the most general form, if X is

similar to R, then conclusions should also be similar:

IFX ~ R THEN C(X) ~ C(Rk)

Frequently, this is simplified to: k = arg mini D(X,Ri) therefore Conclude Ci.

P-rules have great expressive power, subsuming all other kinds of rules. C-rules may be

obtained when distances are calculated using L∞ norm (or Chebyshev norm) D∞(X,R) = maxi

|Xi Ri|, T-rules for voting are obtained using a zero reference vector with Manhattan

distance, or in general case using cosine distance function Dc(X,R) = ∑ ��
�
��� ��/|�||�| that

gives hyperplane decision borders. F-rules are obtained from P-rules for additive distance

functions with membership functions measuring similarity between feature values (Duch and

Blachnik, 2004).

Similarity functions are related to dissimilarity, or distance functions, using differences

between feature values. There is some freedom in choosing the precise functional

relation;for example, it may be an exponential formula:

�(�, �) = ��� �−���

�

���

�(�� − ��)� = ���[−�(�, �)]

where function d(x) = |x|, or its normalized version, d(x) = |x /|xmax-xmin| [[Please check:

should “x” be in italics or not? Should “x” be a small letter or a capital letter? See the

equation for S(X,R).]] is frequently used to measure distance (or dissimilarity) between

feature values, but more sophisticated functions may be postulated. If D(X,R) is the square

of the Euclidean distance, then the similarity function S(X,R) becomes a product of Gaussian

membership functions for each variable, frequently used to create fuzzy rules.

An example of P-rule is: if a new patient has symptoms sufficiently similar to a previously

diagnosed patient, then apply the same diagnostic procedure. In the well-known benchmark

data called Wisconsin breast cancer from the UCI repository, a single rule

IF D(X, R303) < 62.7239 THEN malignant ELSE benign

with Euclidean distance function gives 97.3% accuracy (sensitivity = 97.9% and

specificity = 96.9%), where R303 denotes patient no. 303 with malignant cancer. The

accuracy of this rule is not significantly worse (in a statistical sense) than that of any

classifier on this data, and thus offers the simplest and most comprehensible description

(Grąbczewski and Duch, 2002).

Advantages: P-rules can represent complex knowledge, are suitable for any type of features,

even for complicated graph or hierarchical structures like networks without simple feature-

based representation.

Disadvantages: distance or similarity functions may not have a natural interpretation,

whereas propositional C-rules express classical logic assertions in a simpler way.

Finally, not all objects may be described by a simple attribute-value vector. Objects that have

nested relational structures, such as chemical compounds, or sequential data in

bioinformatics or natural language analysis require a more sophisticated approach. First-

order predicate calculus logic rules (FOL rules) used in such cases are expressed as

Prolog programs (Lavrac and Dzerosky, 1994).

Algorithms for extraction of logical rules from data

Many algorithms for extraction of various forms of rules from data have been developed

(Duch et al. 2001, 2004). Although the philosophy behind all these approaches differs, their

ultimate capability depends on the decision borders that they provide for classification. A

natural category, such as a protein family, may have quite a complex shape in the feature

space and thus may require several prototypes, each associated with different similarity

functions, to describe it.

A good rule should cover many examples with high precision. There is a tradeoff between

simplicity and accuracy of the set of rules. Simple but rough representations of data

structures may be very useful, while optimal complexity of rules should satisfy the Bias-

Variance Trade-Off. Confidence in rules may be regulated by another tradeoff, i.e., that

between accuracy and the rejection rate. Leaving some parts of the data as unclassified

allows for higher confidence in conclusions of rules that handle the remaining part.

Some of the methods that have been devised to generate sets of rules describing data

structures are presented below.

Decision trees (Rokach and Maimon, 2009) represent rules in a hierarchical structure with

each path/branch giving a single rule. The hierarchical structure of the path leads to many

rules sharing the same initial conditions, which is often considered as a disadvantage of this

type of rule extraction method (most of the rules share the same promises). Algorithms that

simplify such rules by converting them into logical rules are known, for example, the C4 rules

for the C4.5 decision trees (Quinlan 1993).

Machine learning (Mitchell, 1997) has focused on covering methods that try to create a

hyperbox containing data from a single category. This includes a whole family of AQ

covering algorithms that try to grow general rules starting from “seed examples” selected for

each class. CN2 is a covering algorithm combining and extending the AQ algorithm using

decision tree learning. RIPPER adds new features in a similar way as decision trees by

creating conjunctive rule conditions, discarding examples already handled by existing rules.

Version spaces (VS) work with symbolic inputs, formulating hypotheses about the data in the

form of very general (single condition) and very specific (all features as conditions)

conjunctive rules, and then specializing general hypotheses and generalizing the specific

ones, until they match.

Neural networks are good classifiers that can be used in various ways to generate logical

rules. Some algorithms are aimed at logical approximation of functions that neural networks

have learned; other algorithms try to enforce rule-like behavior of networks by changing their

cost functions or defining special network structures and neural functions. Separable Basis

Function (SBF) networks use the product of membership functions in their nodes, and thus

are creating sets of F-rules in their nodes that are aggregated using linear combinations,

which is adding a threshold rule to the conclusions of F-rules. Although many neural

algorithms for C-rule and F-rule extraction from data have been described in the literature,

they are not quite easy to use, and software is not readily available.

Nearest neighbor methods, or more similarity-based methods, may be presented in a

framework (Duch, 2000) that includes many methods that are useful for the generation of P-

rules: neural techniques based on the Learning Vector Quantization (LVQ) algorithms, or

Radial Basis Functions (RBF) methods, or various methods to select prototypes for k-

nearest neighbor.

Fuzzy systems are frequently tuned by hand, while neuro-fuzzy approaches (Nauck et al.,

1997) use neural techniques for automatic optimization. Although these systems are capable

of generating high-quality solutions, rarely the sets of rules they find are sufficiently simple to

be used for understanding of data.

Support Vector Machines (SVM) may also be very useful to generate rules in all forms

(Diederich, 2008). Linear SVMs implement T-rules, and non-linear SVMs may find good

prototypes for P-rules.

Toolsfor rule extraction

Many data mining packages, such as Weka, RapidMiner, Knime, Orange, and others

provide many algorithms that search for rules. A list of such packages can be found at the

Open Directory project (http://www.dmoz.org/Computers/Software/Databases/Data_Mining/).

Cross-references
Artificial Intelligence

Bias-Variance Trade-Off

Classification, Machine Learning

Confidence, Machine Learning

Decision Rule, Machine Learning

Entropy, Information Theory

Generalization Ability, Machine Learning

Gini Index

Induction, Logics

Information Gain

Knowledge Discovery, Machine Learning

Kolmogorov-Smirnov Distance

Machine Learning

Overfitting, Machine Learning

R, Data Analysis Tool

Regression, Statistics

Stability, Machine Learning

Support, Machine Learning

Training Set, Machine Learning

Weka, Machine Learning Tool

References

Diederich J (ed.) (2008) Rule Extraction from Support Vector Machines. Springer Studies in

Computational Intelligence, Vol. 80.

Duch W (2000) Similarity based methods: a general framework for classification,

approximation and association. Control and Cybernetics 29(4): 937-968.

Duch W, Setiono R, Zurada JM (2004) Computational intelligence methods for

understanding of data. Proc. of the IEEE 92(5): 771- 805.

Duch W, Blachnik M (2004) Fuzzy rule-based systems derived from similarity to prototypes.

Lecture Notes in Computer Science, Vol. 3316: 912-917.

Duch W, Adamczak R, Grąbczewski K (2001) A new methodology of extraction, optimization

and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks 12:

277-306.

Grąbczewski K, Duch W (2002) Heterogeneous forests of decision trees. Lecture Notes in

Computer Science Vol. 2415: 504-509.

Mitchell T (1997) Machine Learning. New York: McGraw Hill.

Nauck D, Klawonn F, Kruse R (1997) Foundations of Neuro-Fuzzy Systems. Chichester:

Wiley.

Piatetsky-Shapiro G (1991) Discovery, analysis, and presentation of strong rules. In G.

Piatetsky-Shapiro G., Frawley WJ (eds) Knowledge Discovery in Databases, AAAI/MIT

Press, Cambridge, MA.

Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,

San Mateo, CA, USA.

Rokach L, Maimon O (2009) Data Mining with Decision Trees: Theory and Applications,

World Scientific Publishing Company.

Cite as:

W. Duch, Rule discovery, in: W. Dubitzky, O. Wolkenhauer, K. Cho & H. Yokota

(eds.),Encyclopedia of Systems Biology, DOI 10.1007/978-1-4419-9863-7,#Springer

Science+Business Media, LLC 2013

