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Abstract. We prove that the number of terms in the middle of an al-
most split sequence in the module category of a cycle-finite artin algebra
is bounded by 5.

1. Introduction and the main result

Throughout this paper, by an algebra is meant an artin algebra over a
fixed commutative artin ring K, which we moreover assume (without loss
of generality) to be basic and indecomposable. For an algebra A, we denote
by modA the category of finitely generated right A-modules, by indA the
full subcategory of modA formed by the indecomposable modules, by ΓA

the Auslander-Reiten quiver of A, and by τA and τ−1
A the Auslander-Reiten

translations DTr and TrD, respectively. We do not distinguish between a
module in indA and the vertex of ΓA corresponding to it. The Jacobson
radical radA of modA is the ideal generated by all nonisomorphisms between
modules in indA, and the infinite radical rad∞A of modA is the intersection
of all powers radiA, i ≥ 1, of radA. By a theorem of M. Auslander [4],
rad∞A = 0 if and only if A is of finite representation type, that is, indA
admits only a finite number of pairwise nonisomorphic modules. On the
other hand, if A is of infinite representation type then (rad∞A )2 ̸= 0, by a
theorem proved in [11].

A prominent role in the representation theory of algebras is played by al-
most split sequences introduced by M. Auslander and I. Reiten in [5] (see [7]
for general theory and applications). For an algebra A and a nonprojective
module X in indA, there is an almost split sequence

0 → τAX → Y → X → 0,

with τAX a noninjective module in indA called the Auslander-Reiten trans-
lation of X. Then we may associate to X the numerical invariant α(X)
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being the number of summands in a decomposition Y = Y1 ⊕ . . . ⊕ Yr of
Y into a direct sum of modules in indA. Then α(X) measures the com-
plication of homomorphisms in modA with domain τAX and codomain X.
Therefore, it is interesting to study the relation between an algebra A and
the values α(X) for all modules X in indA (we refer to [6], [8], [10], [21], [25],
[28], [29], [31], [45], [46] for some results in this direction). In particular, it
has been proved by R. Bautista and S. Brenner in [8] that, if A is of finite
representation type and X a nonprojective module in indA, then α(X) ≤ 4,
and if α(X) = 4 then the middle term Y of an almost split sequence in
modA with the right term X admits an indecomposable projective-injective
direct summand P , and hence X = P/soc(P ). In [25] S. Liu generalized
this result by showing that the same holds for any nonprojective module
X in indA over an algebra A provided τAX has a projective predecessor
and X has an injective successor in ΓA, as well as for X lying on an ori-
ented cycle in ΓA (see also [21]). It has been conjectured by S. Brenner that
α(X) ≤ 5 for any nonprojective module X in indA for an arbitrary tame
finite dimensional algebra A over an algebraically closed field K. In fact, it
is expected that this also holds for nonprojective indecomposable modules
over arbitrary generically tame (in the sense of [12], [13]) artin algebras.

The main aim of this paper is to prove the following theorem which gives
the affirmative answer for the above conjecture in the case of cycle-finite
artin algebras.

Theorem. Let A be a cycle-finite algebra and X be a nonprojective module
in indA, and

0 → τAX → Y → X → 0

be the associated almost split sequence in modA. The following statements
hold.

(i) α(X) ≤ 5.
(ii) If α(X) = 5 then Y admits an indecomposable projective-injective

direct summand P , and hence X = P/soc(P ).

We would like to mention that, for finite dimensional cycle-finite algebras
A over an algebraically closed field K, the theorem was proved by J. A. de la
Peña and M. Takane [29, Theorem 3], by application of spectral properties
of Coxeter transformations of algebras and results established in [25].

Let A be an algebra. Recall that a cycle in indA is a sequence

X0
f1−−→ X1 → · · · → Xr−1

fr−−→ Xr = X0

of nonzero nonisomorphisms in indA [35], and such a cycle is said to be finite
if the homomorphisms f1, . . . , fr do not belong to rad∞A . Then, following
[3], [40], an algebra A is said to be cycle-finite if all cycles in indA are
finite. The class of cycle-finite algebras contains the following distinguished
classes of algebras: the algebras of finite representation type, the hereditary
algebras of Euclidean type [14], [15], the tame tilted algebras [17], [19],
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[35], the tame double tilted algebras [32], the tame generalized double tilted
algebras [33], the tubular algebras [35], the iterated tubular algebras [30], the
tame quasi-tilted algebras [22], [43], the tame generalized multicoil algebras
[26], the algebras with cycle-finite derived categories [2], and the strongly
simply connected algebras of polynomial growth [41]. On the other hand,
frequently an algebra A admits a Galois covering R → R/G = A, where
R is a cycle-finite locally bounded category and G is an admissible group
of automorphisms of R, which allows to reduce the representation theory
of A to the representation theory of cycle-finite algebras being finite convex
subcategories of R (see [16], [28], [42] for some general results). For example,
every finite dimensional selfinjective algebra of polynomial growth over an
algebraically closed field admits a canonical standard form A (geometric
socle deformation of A) such that A has a Galois covering R → R/G = A,
where R is a cycle-finite selfinjective locally bounded category and G is an
admissible infinite cyclic group of automorphisms ofR, the Auslander-Reiten
quiver ΓA of A is the orbit quiver ΓR/G of ΓR, and the stable Auslander-

Reiten quivers of A and A are isomorphic (see [36] and [44]). Recall also
that, a module X in indA which does not lie on a cycle in indA is called
directing, and its support algebra is a tilted algebra, by a result of C. M.
Ringel [35]. Moreover, it has been proved independently by L. G. Peng -
J. Xiao [27] and A. Skowroński [38] that the Auslander-Reiten quiver ΓA

of an algebra A admits at most finitely many τA-orbits containing directing
modules.

2. Preliminary results

Let H be an indecomposable hereditary algebra and QH the valued quiver
of H. Recall that the vertices of QH are the numbers 1, 2, . . . , n correspond-
ing to a complete set S1, S2, . . . , Sn of pairwise nonisomorphic simple mod-
ules in modH and there is an arrow from i to j in QH if Ext1H(Si, Sj) ̸= 0,
and then to this arrow is assigned the valuation (dimEndH(Sj) Ext

1
H(Si, Sj),

dimEndH(Si) Ext
1
H(Si, Sj)). Recall also that the Auslander-Reiten quiver ΓH

of H has a disjoint union decomposition of the form

ΓH = P(H) ∨R(H) ∨Q(H),

where P(H) is the preprojective component containing all indecomposable
projective H-modules, Q(H) is the preinjective component containing all
indecomposable injective H-modules, and R(H) is the family of all regular
components of ΓH . More precisely, we have:

• if QH is a Dynkin quiver, then R(H) is empty and P(H) = Q(H);
• if QH is a Euclidean quiver, then P(H) ∼= (−N)Qop

H , Q(H) ∼= NQop
H

and R(H) is a strongly separating infinite family of stable tubes;
• if QH is a wild quiver, then P(H) ∼= (−N)Qop

H , Q(H) ∼= NQop
H and

R(H) is an infinite family of components of type ZA∞.
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Let T be a tilting module in modH and B = EndH(T ) the associated
tilted algebra. Then the tilting H-module T determines the torsion pair
(F(T ), T (T )) in modH, with the torsion-free part F(T ) = {X ∈ modH|
HomH(T,X) = 0} and the torsion part T (T ) = {X ∈ modH|Ext1H(T,X) =
0}, and the splitting torsion pair (Y(T ),X (T )) in modB, with the torsion-
free part Y(T ) = {Y ∈ modB|TorB1 (Y, T ) = 0} and the torsion part X (T ) =
{Y ∈ modB|Y ⊗B T = 0}. Then, by the Brenner-Butler theorem, the
functor HomH(T,−) : modH → modB induces an equivalence of T (T ) with
Y(T ), and the functor Ext1H(T,−) : modH → modB induces an equivalence
of F(T ) with X (T ) (see [9], [17]). Further, the images HomH(T, I) of the
indecomposable injective modules I in modH via the functor HomH(T,−)
belong to one component CT of ΓB, called the connecting component of ΓB

determined by T , and form a faithful section ∆T of CT , with ∆T the opposite
valued quiver Qop

H of QH . Recall that a full connected valued subquiver Σ
of a component C of ΓB is called a section (see [1, (VIII.1)]) if Σ has no
oriented cycles, is convex in C, and intersects each τB-orbit of C exactly
once. Moreover, the section Σ is faithful provided the direct sum of all
modules lying on Σ is a faithful B-module. The section ∆T of the connecting
component CT of ΓB has the distinguished property: it connects the torsion-
free part Y(T ) with the torsion part X (T ), because every predecessor in
indB of a module HomH(T, I) from ∆T lies in Y(T ) and every successor
of τ−BHomH(T, I) in indB lies in X (T ). We note that, by a result proved
in [24] and [37], an algebra A is a tilted algebra if and only if ΓA admits a
component C with a faithful section ∆ such that HomA(X, τAY ) = 0 for all
modules X and Y from ∆. We refer also to [18] for another characterization
of tilted algebras involving short chains of modules.

The following proposition is a well-known fact.

Proposition 2.1. Let H be a hereditary algebra of Euclidean type. Then,
for any nonprojective indecomposable module X in modH, we have α(X) ≤
4.

An essential role in the proof of the main theorem will be played by the
following theorem.

Theorem 2.2. Let A be a cycle-finite algebra, C a component of ΓA, and D
be an acyclic left stable full translation subquiver of C which is closed under
predecessors. Then there exists a hereditary algebra H of Euclidean type
and a tilting module T in modH without nonzero preinjective direct sum-
mands such that for the associated tilted algebra B = EndH(T ) the following
statements hold.

(i) B is a quotient algebra of A.
(ii) The torsion-free part Y(T ) ∩ CT of the connecting component CT of

ΓB determined by T is a full translation subquiver of D which is
closed under predecessors in C.

(iii) For any indecomposable module N in D, we have α(N) ≤ 4.
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Proof. Since A is a cycle-finite algebra, every acyclic module X in ΓA is a
directing module in indA. Hence D consists entirely of directing modules.
Moreover, it follows from [27, Theorem 2.7] and [38, Corollary 2], that D
has only finitely many τA-orbits. Then, applying [23, Theorem 3.4], we
conclude that there is a finite acyclic valued quiver ∆ such that D contains
a full translation subquiver Γ which is closed under predecessors in C and is
isomorphic to the translation quiver N∆. Therefore, we may choose in Γ a
finite acyclic convex subquiver ∆ such that Γ consists of the modules τmA X
with m ≥ 0 and X indecomposable modules lying on ∆. Let M be the direct
sum of all indecomposable modules in C lying on the chosen quiver ∆. Let I
be the annihilator annA(M) = {a ∈ A | Ma = 0} of M in A, and B = A/I
the associated quotient algebra. Then I = annA(Γ) (see [37, Lemma 3]) and
consequently Γ consists of indecomposable B-modules. Clearly, B is a cycle-
finite algebra, as a quotient algebra of A. Now, using the fact that Γ ⊆ N∆
and consists of directing B-modules, we conclude that rad∞B (M,M) = 0
and HomB(M, τBM) = 0. Then, applying [39, Lemma 3.4], we conclude
that H = EndB(M) is a hereditary algebra and the quiver QH of H is the
dual valued quiver ∆op of ∆. Further, since M is a faithful B-module with
HomB(M, τBM) = 0, we conclude that pdBM ≤ 1 and Ext1B(M,M) ∼=
DHomB(M, τBM) = 0 (see [1, Lemma VIII.5.1 and Theorem IV.2.13]).
Moreover, it follows from definition of M that, for any module Z in indB
with HomB(M,Z) ̸= 0 and not on ∆, we have HomB(τ

−1
B M,Z) ̸= 0. Since

M is a faithful module in modB there is a monomorphism B → M s for some
positive integer s. Then rad∞B (M,M) = 0 implies HomB(τ

−1
B M,B) = 0, and

consequently idBM ≤ 1. Applying now [34, Lemma 1.6] we conclude thatM
is a tilting B-module. Further, applying the Brenner-Butler theorem (see [1,
Theorem VI.3.8]), we conclude that M is a tilting module in modHop and
B ∼= EndHop(M). Since H is a hereditary algebra, T = D(M) is a tilting
module in modH with B ∼= EndH(T ), and consequently B is a tilted algebra
of typeQH = ∆op. Moreover, the translation quiver Γ is the torsion-free part
Y(T ) ∩ CT of the connecting component CT of ΓB determined by the tilting
H-module T (see [1, Theorem VIII.5.6]). Observe that then Y(T )∩CT is the
image HomH(T,Q(H)) of the preinjective component Q(H) of ΓH via the
functor HomH(T,−) : modH → modB. In particular, we conclude that H
is of infinite representation type (QH is not a Dynkin quiver) and CT does not
contain a projective module, and hence T is without nonzero preinjective
direct summands (see [1, Proposition VIII.4.1]). Finally, we prove that
QH = ∆op is a Euclidean quiver. Suppose that QH is a wild quiver. Since
T has no nonzero preinjective direct summands, it follows from [20] that
ΓB admits an acyclic component Σ with infinitely many τB-orbits, with the
stable part ZA∞, contained entirely in the torsion-free part Y(T ) of modB.
Since B is a cycle-finite algebra, Σ consists of directing B-modules, and
hence ΓB contains infinitely many τB-orbits containing directing modules, a
contradiction. Therefore, QH is a Euclidean quiver and B is a tilted algebra



6 MALICKI, DE LA PEÑA, AND SKOWROŃSKI

of Euclidean type QH = ∆op. This finishes proof of the statements (i) and
(ii).

In order to prove (iii), consider a module N in D and an almost split
sequence

0 → τAN → E → N → 0

in modA with the right term N . Since D is left stable and closed under
predecessors in C, we have in modA almost split sequences

0 → τm+1
A N → τmA E → τmA N → 0

for all nonnegative integers m. In particular, there exists a positive integer
n such that

0 → τn+1
A N → τnAE → τnAN → 0

is an exact sequence in the additive category add(Y(T ) ∩ CT ) = add(Γ).
Since Y(T ) ∩ CT = HomH(T,Q(H)), this exact sequence is the image via
the functor HomH(T,−) : modH → modB of an almost split sequence

0 → τHU → V → U → 0

with all terms in the additive category add(Q(H)) of Q(H). Then, applying
Proposition 2.1, we conclude that α(N) = α(τnAN) = α(τnBN) = α(U) ≤
4. �

3. Proof of Theorem

We will use the following results proved by S. Liu in [25] (Theorem 7,
Proposition 8, Lemma 6 and its dual).

Theorem 3.1. Let A be an algebra, and let

0 → τAX →
r⊕

i=1

Yi → X → 0

be an almost split sequence in modA with Y1, . . . , Yr from indA. Assume
that one of the following conditions holds.

(i) τAX has a projective predecessor and X has an injective successor
in ΓA.

(ii) X lies on an oriented cycle in ΓA.

Then r ≤ 4, and r = 4 implies that one of the modules Yi is projective-
injective, whereas the others are neither projective nor injective.

Proposition 3.2. Let A be an algebra, and let

0 → τAX →
r⊕

i=1

Yi → X → 0

be an almost split sequence in modA with r ≥ 5 and Y1, . . . , Yr from indA.
Then the following statements hold.

(i) If there is a sectional path from τAX to an injective module in ΓA,
then τAX has no projective predecessor in ΓA.
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(ii) If there is a sectional path from a projective module in ΓA to X, then
X has no injective successor in ΓA.

We are now in position to prove the main result of the paper.
Let A be a cycle-finite algebra, and let

0 → τAX →
r⊕

i=1

Yi → X → 0

be an almost split sequence in modA with Y1, . . . , Yr from indA, and let C
be the component of ΓA containing X. Assume r ≥ 5. We claim that then
r = 5, one of the modules Yi is projective-injective, whereas the others are
neither projective nor injective.

Since r ≥ 5, it follows from Theorem 3.1 that τAX has no projective
predecessor nor X has no injective successor in ΓA. Assume that τAX has
no projective predecessor in ΓA.

We claim that then one of the modules Yi is projective. Suppose it is not
the case. Then for any nonnegative integer m we have in modA an almost
split sequence

0 → τm+1
A X →

r⊕
i=1

τmA Yi → τmA X → 0

with r ≥ 5 and τmA Y1, . . . , τ
m
A Yr from indA, because τAX has no projective

predecessor in ΓA. Moreover, it follows from Theorem 3.1, that τmA X, m ≥ 0,
are acyclic modules in ΓA. Then it follows from [23, Theorem 3.4] that the
modules τmA X, m ≥ 0, belong to an acyclic left stable full translation sub-
quiver D of C which is closed under predecessors. But then the assumption
r ≥ 5 contradicts Theorem 2.2(iii). Therefore, one of the modules Yi, say
Yr is projective.

Observe now that the remaining modules Y1, . . . , Yr−1 are noninjective.
Indeed, since Yr is projective, we have ℓ(τAX) < ℓ(Yr) and consequently∑r−1

i=1 ℓ(Yi) < ℓ(X). Further, Yr is a projective predecessor of X in ΓA, and
hence, applying Proposition 3.2(ii), we conclude that X has no injective
successors in ΓA. We claim that Yr is injective. Indeed, if it is not the case,
we have in modA almost split sequences

0 → τ−m+1
A X →

r⊕
i=1

τ−m
A Yi → τ−m

A X → 0

for all nonnegative integers m. Then, applying the dual of Theorem 2.2, we
obtain a contradiction with r ≥ 5. Thus Yr is projective-injective. Observe
that then the modules Y1, . . . , Yr−1 are nonprojective, because Yr injective
forces the inequalities ℓ(X) < ℓ(Yr) and

∑r−1
i=1 ℓ(Yi) < ℓ(τAX).

Finally, since τAX has no projective predecessor in ΓA, we have in modA
almost split sequences

0 → τm+1
A X →

r−1⊕
i=1

τmA Yi → τmA X → 0
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for all positive integers m. Applying Proposition 3.2 again, we conclude (as
in the first part of the proof) that r − 1 ≤ 4, and hence r ≤ 5. Therefore,
α(X) = r = 5, one of the modules Yi is projective-injective, whereas the
others are neither projective nor injective. Moreover, if Yi is a projective-
injective module, then X ∼= Yi/soc(Yi).
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[22] H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type. Colloq. Math.
71 (1996), 161–181.

[23] S. Liu, Semi-stable components of an Auslander-Reiten quiver. J. London Math. Soc.
47 (1993), 405–416.

[24] S. Liu, Tilted algebras and generalized standard Auslander-Reiten components. Arch.
Math. (Basel) 61 (1993), 12–19.

[25] S. Liu, Almost split sequences for non-regular modules. Fund. Math. 143 (1993),
183–190.
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[30] J. A. de la Peña and B. Tomé, Iterated tubular algebras. J. Pure Appl. Algebra 64
(1990), 303–314.
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[33] I. Reiten and A. Skowroński, Generalized double tilted algebras. J. Math. Soc. Japan
56 (2004), 269–288.
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